15. Trigonometrical Identities Solutions#

  1. A+B+C=πA+B=πC\because A + B + C = \pi \therefore A + B = \pi - C

    cos(A+B)=cos(πC)=cosCsinAsinBcosC=cosAcosB\Rightarrow \cos(A + B) = \cos(\pi - C) = \cos C \Rightarrow \sin A\sin B - \cos C = \cos A\cos B

    (sinAsinBcosC)2=cos2Acos2B\Rightarrow (\sin A\sin B - \cos C)^2 = \cos^2A\cos^2B

    sin2Asin2B+cos2C2sinAsinBcosC=(1sin2A)(1sin2B)\Rightarrow \sin^2A\sin^2B + \cos^2C - 2\sin A\sin B\cos C = (1 - \sin^2A)(1 - \sin^2B)

    sinA+sin2B+cos2C1=2sinAsinBcosC\Rightarrow \sin^A + \sin^2B + \cos^2C - 1 = 2\sin A\sin B\cos C

    sin2A+sin2Bcos2C=2sinAsinBcosC\Rightarrow \sin^2A + \sin^2B - \cos^2C = 2\sin A\sin B\cos C

  2. A+B+C=180A2+B2+C2=90A2+B2=90C2A + B + C = 180^\circ \Rightarrow \frac{A}{2} + \frac{B}{2} + \frac{C}{2} = 90^\circ \Rightarrow \frac{A}{2} + \frac{B}{2} = 90^\circ - \frac{C}{2}

    cos(A2+B2)=cos(90C2)\Rightarrow \cos\left(\frac{A}{2} + \frac{B}{2}\right) = \cos\left(90^\circ - \frac{C}{2}\right)

    cosA2cosB2sinA2sinB2=sinC2\Rightarrow \cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{A}{2}\sin\frac{B}{2} = \sin\frac{C}{2}

    sinC2+sinA2sinB2=cosA2cosB2\Rightarrow \sin\frac{C}{2} + \sin\frac{A}{2}\sin\frac{B}{2} = \cos\frac{A}{2}\cos\frac{B}{2}

    (sinC2+sinA2sinB2)2=cos2A2cos2B2\Rightarrow \left(\sin\frac{C}{2} + \sin\frac{A}{2}\sin\frac{B}{2}\right)^2 = \cos^2\frac{A}{2}\cos^2\frac{B}{2}

    sin2C2+sin2A2sin2B2+2sinA2sinB2sinC2=(1cos2A2)(1cos2B2)\Rightarrow \sin^2\frac{C}{2} + \sin^2\frac{A}{2}\sin^2\frac{B}{2} + 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} = \left(1 - \cos^2\frac{A}{2}\right)\left(1 - \cos^2\frac{B}{2}\right)

    sin2A2+sin2B2+sin2C2=12sinA2sinB2sinC2\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

  3. Let A+B=Ccos(A+B)=cosCA + B = C \Rightarrow \cos(A + B) = \cos C

    sinAsinB+cosC=cosAcosB(sinAsinB+cosC)2=cos2Acos2B\Rightarrow \sin A\sin B + \cos C = \cos A\cos B \Rightarrow (\sin A\sin B + \cos C)^2 = \cos^2A\cos^2B

    sin2Asin2B+cos2C+2sinAsinBcosC=(1sin2A)(1sin2B)\Rightarrow \sin^2A\sin^2B + \cos^2C + 2\sin A\sin B\cos C = (1 - \sin^2A)(1 - \sin^2B)

    sin2A+sin2B+2sinAsinBcosC=sin2C\Rightarrow \sin^2A + \sin^2B + 2\sin A\sin B\cos C = \sin^2C

    sin2A+sin2B+2sinAsinBcos(A+B)=sin2(A+B)\Rightarrow \sin^2A + \sin^2B + 2\sin A\sin B\cos(A + B) = \sin^2(A + B)

  4. Given, A+B+C=180A+B=180Ccos(A+B)=cosCA + B + C = 180^\circ \Rightarrow A + B = 180^\circ - C \Rightarrow \cos(A + B) = -\cos C

    cosAcosB+cosC=sinAsinB(cosAcosB+cosC)2=sin2Asin2B\Rightarrow \cos A\cos B + \cos C = \sin A\sin B \Rightarrow (\cos A\cos B + \cos C)^2 = \sin^2A\sin^2B

    cos2Acos2B+cos2C+2cosAcosBcosC=(1cos2A)(1cos2B)\Rightarrow \cos^2A\cos^2B + \cos^2C + 2\cos A\cos B\cos C = (1 - \cos^2A)(1 - \cos^2B)

    cos2A+cos2B+cos2C+2cosAcosBcosC=1\Rightarrow \cos^2A + \cos^2B + \cos^2C + 2\cos A\cos B\cos C = 1

  5. We have just proved that cos2A+cos2B+cos2C+2cosAcosBcosC=1\cos^2A + \cos^2B + \cos^2C + 2\cos A\cos B\cos C = 1

    3sin2Asin2Bsin2C+2cosAcosBcosC=1\Rightarrow 3 - \sin^2A - \sin^2B - \sin^2C + 2\cos A\cos B\cos C = 1

    sin2A+sin2B+sin2C=2(1+cosAcosBcosC)\Rightarrow \sin^2A + \sin^2B + \sin^2C = 2(1 + \cos A\cos B\cos C)

  6. Given, A+B+C=180A+B=180Ccos(A+B)=cosCA + B + C = 180^\circ \Rightarrow A + B = 180^\circ - C \Rightarrow \cos(A + B) = -\cos C

    cosAcosB=sinAsinBcosCcos2Acos2B=sin2Asin2B+cos2C2sinAsinBcosC\Rightarrow \cos A\cos B = \sin A\sin B - \cos C \Rightarrow \cos^2A\cos^2B = \sin^2A\sin^2B + \cos^2C - 2\sin A\sin B\cos C

    cos2Acos2B=(1cos2A)(1cos2B)+cos2C2sinAsinBcosC\Rightarrow \cos^2A\cos^2B = (1 - \cos^2A)(1 - \cos^2B) + \cos^2C - 2\sin A\sin B\cos C

    cos2A+cos2Bcos2C=12sinAsinBcosC\Rightarrow \cos^2A + \cos^2B - \cos^2C = 1 - 2\sin A\sin B\cos C

  7. Given, A+B+C=180A+B+C2=90A + B + C = 180^\circ \Rightarrow \frac{A + B + C}{2} = 90^\circ

    cos(A2+B2)=sinC2\Rightarrow \cos\left(\frac{A}{2} + \frac{B}{2}\right) = \sin\frac{C}{2}

    cosA2cosB2sinC2=sinA2sinB2\Rightarrow \cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{C}{2} = \sin\frac{A}{2}\sin\frac{B}{2}

    cos2A2cos2B2+sin2C22cosA2cosB2sinC2=(1cos2A2)(1cos2B2)\Rightarrow \cos^2\frac{A}{2}\cos^2\frac{B}{2} + \sin^2\frac{C}{2} - 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2} = \left(1 - \cos^2\frac{A}{2}\right)\left(1 - \cos^2\frac{B}{2}\right)

    cos2A2+cos2B2cos2C2=2cosA2cosB2sinC2\Rightarrow \cos^2\frac{A}{2} + \cos^2\frac{B}{2} - \cos^2\frac{C}{2} = 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}

  8. Given, A+B+C=180A+B+C2=90A + B + C = 180^\circ \Rightarrow \frac{A + B + C}{2} = 90^\circ

    cos(A2+B2)=sinC2\Rightarrow \cos\left(\frac{A}{2} + \frac{B}{2}\right) = \sin\frac{C}{2}

    cosA2cosB2=sinA2sinB2+sinC2\Rightarrow \cos\frac{A}{2}\cos\frac{B}{2} = \sin\frac{A}{2}\sin\frac{B}{2} + \sin\frac{C}{2}

    cos2A2cos2B2=sin2A2sin2B2+sin2C2+2sinA2sinB2sinC2\Rightarrow \cos^2\frac{A}{2}\cos^2\frac{B}{2} = \sin^2\frac{A}{2}\sin^2\frac{B}{2} + \sin^2\frac{C}{2} + 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

    cos2A2cos2B2=(1cos2A2)(1cos2B2)+sin2C2+2sinA2sinB2sinC2\Rightarrow \cos^2\frac{A}{2}\cos^2\frac{B}{2} = \left(1 - \cos^2\frac{A}{2}\right)\left(1 - \cos^2\frac{B}{2}\right) + \sin^2\frac{C}{2} + 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

    cos2A2+cos2B2+cos2C2=2+2sinA2sinB2sinC2\cos^2\frac{A}{2} + \cos^2\frac{B}{2} + \cos^2\frac{C}{2} = 2 + 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

  9. Given, A+B+C=π2A+B=π2Ccos(A+B)=sinCA + B + C = \frac{\pi}{2} \Rightarrow A + B = \frac{\pi}{2} - C \Rightarrow \cos(A + B) = \sin C

    cosAcosB=sinAsinB+sinC\Rightarrow \cos A\cos B = \sin A\sin B + \sin C

    cos2Acos2B=sin2Asin2B+sin2C+2sinAsinBsinC\Rightarrow \cos^2A\cos^2B = \sin^2A\sin^2B + \sin^2C + 2\sin A\sin B\sin C

    (1sin2A)(1sin2B)=sin2Asin2B+sin2C+2sinAsinBsinC\Rightarrow (1 - \sin^2A)(1 - \sin^2B) = \sin^2A\sin^2B + \sin^2C + 2\sin A\sin B\sin C

    sin2A+sin2B+sin2C=12sinAsinBsinC\Rightarrow \sin^2A + \sin^2B + \sin^2C = 1 - 2\sin A\sin B\sin C

  10. We have just proven that sin2A+sin2B+sin2C=12sinAsinBsinC\sin^2A + \sin^2B + \sin^2C = 1 - 2\sin A\sin B\sin C in previous problem.

    1cos2A+1cos2B+1cos2C=12sinAsinBsinC\Rightarrow 1 - \cos^2A + 1 - \cos^2B + 1 - \cos^2C = 1 - 2\sin A\sin B\sin C

    cos2A+cos2B+cos2C=2+2sinAsinBsinC\Rightarrow \cos^2A + \cos^2B + \cos^2C = 2 + 2\sin A\sin B\sin C

  11. Givem A+B+C=2πA+B=2πCcos(A+B)=cosCA + B + C = 2\pi \Rightarrow A + B = 2\pi - C \Rightarrow \cos(A + B) = \cos C

    cosAcosBcosC=sinAsinB\Rightarrow \cos A\cos B - \cos C = \sin A\sin B

    cos2Acos2B+cos2C2cosAcosBcosC=sin2Asin2B=(1cos2A)(1cos2B)\Rightarrow \cos^2A\cos^2B + \cos^2C - 2\cos A\cos B\cos C = \sin^2A\sin^2B = (1 - \cos^2A)(1 - \cos^2B)

    cos2A+cos2B+cos2C2cosAcosBcosC=1\Rightarrow \cos^2A + \cos^2B + \cos^2C - 2\cos A\cos B\cos C = 1

  12. Given A+B=Ccos(A+B)=cosCA + B = C \Rightarrow \cos(A + B) = \cos C

    cosAcosBcosC=sinAsinB\Rightarrow \cos A\cos B - \cos C = \sin A\sin B

    cos2Acos2B+cos2C2cosAcosBcosC=sin2Asin2B\Rightarrow \cos^2A\cos^2B + \cos^2C - 2\cos A\cos B\cos C = \sin^2A\sin^2B

    cos2Acos2B+cos2C2cosAcosBcosC=(1cos2A)(1cos2B)\Rightarrow \cos^2A\cos^2B + \cos^2C - 2\cos A\cos B\cos C = (1 - \cos^2A)(1 - \cos^2B)

    cos2A+cos2B+cos2C2cosAcosBcosC=1\Rightarrow \cos^2A + \cos^2B + \cos^2C - 2\cos A\cos B\cos C = 1

  13. Given A+B=π3cos(A+B)=cosπ3=12A + B = \frac{\pi}{3} \Rightarrow \cos(A + B) = \cos\frac{\pi}{3} = \frac{1}{2}

    cosAcosB12=sinAsinB\Rightarrow \cos A\cos B - \frac{1}{2} = \sin A\sin B

    cos2Acos2BcosAcosB+14=sin2Asin2B=(1cos2A)(1cos2B)\Rightarrow \cos^2A\cos^2B - \cos A\cos B + \frac{1}{4} = \sin^2A\sin^2B = (1 - \cos^2A)(1 - \cos^2B)

    cos2A+cos2BcosAcosB=34\Rightarrow \cos^2A + \cos^2B - \cos A\cos B = \frac{3}{4}

  14. From problem 12 we have A+B=CA + B = C and cos2A+cos2B+cos2C2cosAcosBcosC=1\cos^2A + \cos^2B + \cos^2C - 2\cos A\cos B\cos C = 1

    Substituting C=A+BC = A + B we get cos2A+cos2B+cos2(A+B)2cosAcosBcos(A+B)=1\cos^2A + \cos^2B + \cos^2(A + B) - 2\cos A\cos B\cos(A + B) = 1

    cos2B+cos2(A+B)2cosAcosBcos(A+B)=1cos2A=sin2A\Rightarrow \cos^2B + \cos^2(A + B) - 2\cos A\cos B\cos(A + B) = 1 - \cos^2A = \sin^2A which is independent of BB

  15. Given A+B+C=πA + B + C = \pi and A+B=2CC=π3A+B=πpi3A + B = 2C \Rightarrow C = \frac{\pi}{3} \Rightarrow A + B = \pi - \frac{pi}{3}

    cos(A+B)=cosπ3cosAcosB=sinAsinB12\cos(A + B) = -\cos\frac{\pi}{3}\Rightarrow \cos A\cos B = \sin A\sin B - \frac{1}{2}

    cos2Acos2B=sin2Asin2BsinAsinB+14\Rightarrow \cos^2A\cos^2B = \sin^2A\sin^2B - \sin A\sin B + \frac{1}{4}

    (1sin2A)(1sin2B)=sin2Asin2BsinAsinB+14\Rightarrow (1 - \sin^2A)(1 - \sin^2B) = \sin^2A\sin^2B - \sin A\sin B + \frac{1}{4}

    4(sin2A+sin2BsinAsinB)=3\Rightarrow 4(\sin^2A + \sin^2B - \sin A\sin B) = 3

  16. Given A+B+C=2πcos(B+C)=cos(2πA)=cosAA + B + C = 2\pi \Rightarrow \cos(B + C) = \cos(2\pi - A) = \cos A

    cosBcosCcosA=sinBsinC\Rightarrow \cos B\cos C - \cos A = \sin B\sin C

    cosBcos2C+cos2A2cosAcosBcosC=sin2Bsin2C=(1cos2B)(1cos2C)\Rightarrow \cos^B\cos^2C + \cos^2A - 2\cos A\cos B\cos C = \sin^2B\sin^2C = (1 - \cos^2B)(1 - \cos^2C)

    cos2B+cos2Csin2A2cosAcosBcosC=0\Rightarrow \cos^2B + \cos^2C - \sin^2A - 2\cos A\cos B\cos C = 0

  17. Given A+B+C=0cos(A+B)=cosCA + B + C = 0 \Rightarrow \cos(A + B) = \cos C

    cosAcosBcosC=sinAsinB\Rightarrow \cos A\cos B - \cos C = \sin A\sin B

    cos2Acos2B+cos2C2cosAcosBcosC=sin2Asin2B=(1cos2A)(1cos2B)\Rightarrow \cos^2A\cos^2B + \cos^2C - 2\cos A\cos B\cos C = \sin^2A\sin^2B = (1 - \cos^2A)(1 - \cos^2B)

    cos2A+cos2B+cos2C=1+2cosAcosBcosC\Rightarrow \cos^2A + \cos^2B + \cos^2C = 1 + 2\cos A\cos B\cos C

  18. Putting A=BC,B=CAA = B - C, B = C - A and C=ABC = A - B in 17 we can obtain the desired result.

  19. Given A+B+C=π,A + B + C = \pi, we have to prove that sinAcosBcosC+sinBcosCcosA+sinCcosAcosB=sinAsinBsinC\sin A\cos B\cos C + \sin B\cos C\cos A + \sin C\cos A\cos B= \sin A\sin B\sin C

    Dividing both sides by sinAsinBsinC,\sin A\sin B\sin C, we get

    cotBcotC+cotCcotA+cotAcotB=1\cot B\cot C + \cot C\cot A + \cot A\cot B = 1

    A+B=πCcot(A+B)=cotCA + B = \pi - C\Rightarrow \cot(A + B) = -\cot C

    cotAcotB1cotA+cotB=cotC\Rightarrow \frac{\cot A\cot B - 1}{\cot A + \cot B} = -\cot C

    cotBcotC+cotCcotA+cotAcotB=1\Rightarrow \cot B\cot C + \cot C\cot A + \cot A\cot B = 1

  20. Given, A+B+C=πA+B=πCA + B + C = \pi \Rightarrow A + B = \pi - C

    tan(A+B)=tan(πC)=tanC\Rightarrow \tan(A + B) = \tan(\pi - C) = -\tan C

    tanA+tanB1tanAtanB=tanC\Rightarrow \frac{\tan A + \tan B}{1 - \tan A\tan B} = -\tan C

    tanA+tanB+tanC=tanAtanBtanC\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C

  21. Given A+B+C=πA+B2=πC2A + B + C = \pi \Rightarrow \frac{A + B}{2} = \frac{\pi - C}{2}

    tanA+B2=tanπC2\Rightarrow \tan\frac{A + B}{2} = \tan\frac{\pi - C}{2}

    tanA2+tanB21tanA2tanB2=cotC2=1tanC2\Rightarrow \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2}\tan\frac{B}{2}} = \cot\frac{C}{2} = \frac{1}{\tan\frac{C}{2}}

    tanA2tanB2+tanB2tanC2+tanC2tanA2=1\Rightarrow \tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1

  22. Let B+CA=α,C+AB=β,A+BC=γB + C - A = \alpha, C + A - B = \beta, A + B - C = \gamma

    α+β+γ=A+B+C=π\alpha + \beta + \gamma = A + B + C = \pi

    We have just proven that if A+B+C=πA + B + C = \pi then tanA+tanB+tanC=tanAtanBtanC\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C

    Thus, substituting we get, tanα+tanβ+tanγ=tanαtanβtanγ\Rightarrow \tan\alpha + \tan\beta + \tan\gamma = \tan\alpha\tan\beta\tan\gamma

    tan(B+CA)+tan(C+AB)+tan(A+BC)=tan(B+CA)tan(C+AB)tan(A+BC)\Rightarrow \tan(B + C - A) + \tan(C + A - B) + \tan(A + B - C) = \tan(B + C - A)\tan(C + A - B)\tan(A + B - C)

  23. Given A+B+C=πA+B=πCcot(A+B)=cot(πC)A + B + C = \pi\Rightarrow A + B = \pi - C \Rightarrow \cot(A + B) = \cot(\pi - C)

    cotAcotB1cotA+cotB=cotC\Rightarrow \frac{\cot A\cot B - 1}{\cot A + \cot B} = -\cot C

    cotBcotC+cotCcotA+cotAcotB=1\Rightarrow \cot B\cot C + \cot C\cot A + \cot A\cot B = 1

  24. From previosu problem if A+B+C=πA + B + C = \pi then cotBcotC+cotCcotA+cotAcotB=1\Rightarrow \cot B\cot C + \cot C\cot A + \cot A\cot B = 1

    Given cotA+cotB+cotC=3\cot A + \cot B + \cot C = \sqrt{3}

    cot2A+cot2B+cot2C+2(cotAcotB+cotBcotC+cotCcotA)=3\Rightarrow \cot^2A + \cot^2B + \cot^2C + 2(\cot A\cot B + \cot B\cot C + \cot C\cot A) = 3

    cot2A+cot2B+cot2C=1\cot^2A + \cot^2B + \cot^2C = 1

    2cot2A+2cot2B+2cot2C2=02\cot^2A + 2\cot^2B + 2\cot^2C - 2 = 0

    2cot2A+2cot2B+2cot2C2(cotAcotB+cotBcotC+cotCcotA)=02\cot^2A + 2\cot^2B + 2\cot^2C - 2(\cot A\cot B + \cot B\cot C + \cot C\cot A) = 0

    (cotAcotB)2+(cotBcotC)2+(cotCcotA)2=0(\cot A - \cot B)^2 + (\cot B - \cot C)^2 + (\cot C - \cot A)^2 = 0

    This is possible only if cotAcotB=0\cot A - \cot B = 0 i.e. cotA=cotB,\cot A = \cot B, cotBcotC=0\cot B - \cot C = 0 i.e. cotB=cotC\cot B = \cot C and cotCcotA=0\cot C - \cot A = 0 i.e. cotC=cotA\cot C = \cot A

    cotA=cotB=cotCA=B=C\therefore \cot A = \cot B = \cot C \Rightarrow A = B = C

  25. A+B+C+D=2πA+B=2πCD\because A + B + C + D = 2\pi \Rightarrow A + B = 2\pi - C - D

    tan(A+B)=tan(C+D)\Rightarrow \tan(A + B) = -\tan(C + D)

    tanA+tanB1tanAtanB=tanC+tanD1tanCtanD\Rightarrow \frac{\tan A + \tan B}{1 - \tan A\tan B} = -\frac{\tan C + \tan D}{1 - \tan C\tan D}

    (tanA+tanB)(1tanCtanD)=(1tanAtanB)(tanC+tanD)\Rightarrow (\tan A + \tan B)(1 - \tan C\tan D) = -(1 - \tan A\tan B)(\tan C + \tan D)

    tanA+tanB+tanC+tanD=tanAtanBtanC+tanAtanCtanD+tanAtanBtanD+tanBtanCtanD\Rightarrow \tan A + \tan B + \tan C + \tan D = \tan A\tan B\tan C + \tan A\tan C\tan D + \tan A\tan B\tan D + \tan B\tan C\tan D

    Dividing both sides by tanAtanBtanCtanD,\tan A\tan B\tan C\tan D, we get

    tanA+tanB+tanC+tanDtanAtanBtanCtanD=1tanA+1tanB+1tanC+1tanD\frac{\tan A + \tan B + \tan C + \tan D}{\tan A\tan B\tan C\tan D} = \frac{1}{\tan A} + \frac{1}{\tan B} + \frac{1}{\tan C} + \frac{1}{\tan D}

    tanA+tanB+tanC+tanDcotA+cotB+cotC+cotD=tanAtanBtanCtanD\Rightarrow \frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \tan A\tan B\tan C\tan D

  26. Given A+B+C=π2A+B=π2CA + B + C = \frac{\pi}{2}\Rightarrow A + B = \frac{\pi}{2} - C

    cot(A+B)=cot(π2C)\Rightarrow \cot(A + B) = \cot\left(\frac{\pi}{2} - C\right)

    cotAcotB1cotA+cotB=tanC=1cotC\Rightarrow \frac{\cot A\cot B - 1}{\cot A + \cot B} = \tan C = \frac{1}{\cot C}

    cotA+cotB+cotC=cotAcotBcotC\Rightarrow \cot A + \cot B + \cot C = \cot A\cot B\cot C

  27. We have just proven in 26 that cotA+cotB+cotC=cotAcotBcotC\Rightarrow \cot A + \cot B + \cot C = \cot A\cot B\cot C

    Dividing both sides by cotAcotBcotC,\cot A\cot B\cot C, we get

    tanAtanB+tanBtanC+tanCtanA=1\tan A\tan B + \tan B\tan C + \tan C\tan A = 1

  28. Given A+B+C=π3(A+B+C)=3π3A+3B=3π3CA + B + C = \pi \Rightarrow 3(A + B + C) = 3\pi \Rightarrow 3A + 3B = 3\pi - 3C

    tan(3A+3B)=tan(3π3C)=tan3C\Rightarrow \tan(3A + 3B) = \tan(3\pi - 3C) = -\tan3C

    tan3A+tan3B1tan3Atan3B=tan3C\Rightarrow \frac{\tan 3A + \tan 3B}{1 - \tan3A\tan3B} = -\tan3C

    tan3A+tan3B+tan3C=tan3Atan3Btan3C\Rightarrow \tan 3A + \tan 3B + \tan 3C = \tan 3A\tan 3B\tan 3C

  29. Given A+B+C=πA+B2=πC2A + B + C = \pi \Rightarrow \frac{A + B}{2} = \frac{\pi - C}{2}

    cotA+B2=cotπC2\Rightarrow \cot\frac{A + B}{2} = \cot\frac{\pi - C}{2}

    cotA2cotB21cotA2+cotB2=tanC2=1cotC2\Rightarrow \frac{\cot\frac{A}{2}\cot\frac{B}{2} - 1}{\cot\frac{A}{2} + \cot\frac{B}{2}} = \tan\frac{C}{2} = \frac{1}{\cot\frac{C}{2}}

    cotA2+cotB2+cotC2=cotA2cotB2cotC2\Rightarrow \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}

  30. We have to prove that cotA+cotBtanA+tanB+cotB+cotCtanB+tanC+cotC+cotAtanC+tanA=1\frac{\cot A + \cot B}{\tan A + \tan B} + \frac{\cot B + \cot C}{\tan B + \tan C} + \frac{\cot C + \cot A}{\tan C + \tan A} = 1

    Putting tanA=1cotA,tanB=1cotB,tanC=1cotC,\tan A = \frac{1}{\cot A}, \tan B = \frac{1}{\cot B}, \tan C = \frac{1}{\cot C}, we get

    cotAcotB+cotBcotC+cotCcotA=1\cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    We have already proven above in problem 19.

  31. Let AB=α,BC=β,CA=γ,A - B = \alpha, B - C = \beta, C - A = \gamma, then

    α+β+γ=0\alpha + \beta + \gamma = 0

    tan(α+β)=tanγ\Rightarrow \tan(\alpha + \beta) = -\tan\gamma

    tanα+tanβ1tanαtanβ=tanγ\Rightarrow \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha\tan\beta} = -\tan\gamma

    tanα+tanβ+tanγ=tanαtanβtanγ\tan\alpha + \tan\beta + \tan\gamma = \tan\alpha\tan\beta\tan\gamma

    Substituting back the values, we get

    tan(AB)+tan(BC)+tan(CA)=tan(AB)tan(BC)tan(CA)\tan(A - B) + \tan(B - C) + \tan(C - A) = \tan(A - B)\tan(B - C)\tan(C - A)

  32. We have already proven in problem 19 that if A+B+C=0,A + B + C = 0, then

    cotAcotB+cotBcotC+cotCcotA=1\cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    Let A=x+yz,B=z+xy,C=y+zx,A = x + y - z, B = z + x - y, C = y + z - x, then

    A+B+C=x+y+z=0A + B + C = x + y + z = 0

    cotAcotB+cotBcotC+cotCcotA=1\Rightarrow \cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    Substituting back the values, we get

    cot(x+yz)cot(z+xy)+cot(x+yz)cot(y+zx)+cot(y+zx)cot(z+xy)=1\cot(x + y - z)\cot(z + x - y) + \cot(x + y - z)\cot(y + z - x) + \cot(y + z - x)\cot(z + x - y) = 1

  33. Given A+B+C=nπtan(A+B)=tan(nπC)=tanCA + B + C= n\pi \Rightarrow \tan(A + B) = \tan(n\pi - C) = -\tan C

    tanA+tanB1tanAtanB=tanC\Rightarrow \frac{\tan A + \tan B}{1 - \tan A\tan B} = -\tan C

    tanA+tanB+tanC=tanAtanBtanC\Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C

  34. L.H.S =(sin2A+sin2B)+sin2C=2sin(A+B)cos(AB)+sin2C= (\sin2A + \sin2B) + \sin2C = 2\sin(A + B)\cos(A - B) + \sin2C

    =2sin(πC)cos(AB)+sin2C=2sinCcos(AB)+2sinCcosC= 2\sin(\pi - C)\cos(A - B) + \sin2C = 2\sin C\cos(A - B) + 2\sin C\cos C

    =2sinC[cos(AB)+cos{π(A+B)}]=2sinC[cos(AB)cos(A+B)]= 2\sin C[\cos(A - B) + \cos\{\pi - (A + B)\}] = 2\sin C[\cos(A - B) - \cos(A + B)]

    =4sinAsinBsinC= 4\sin A\sin B\sin C

  35. L.H.S. =(cosA+cosB)+cosC1=2cosA+B2cosAB2+cosC1= (\cos A + \cos B) + \cos C - 1 = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} + \cos C - 1

    =2cos(π2C2)cosAB2+cosC1= 2\cos\left(\frac{\pi}{2} - \frac{C}{2}\right)\cos\frac{A - B}{2} + \cos C - 1

    =2sinC2cosAB2+12sin2C21= 2\sin\frac{C}{2}\cos\frac{A - B}{2} + 1 - 2\sin^2\frac{C}{2} - 1

    =2sinC2[cosAB2sinC2]= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \sin\frac{C}{2}\right]

    =2sinC2[cosAB2sin(π2A+B2)]= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \sin\left(\frac{\pi}{2} - \frac{A + B}{2}\right)\right]

    =2sinC2[cosAB2cosA+B2]= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \cos\frac{A + B}{2}\right]

    =4sinA2sinB2sinC2= 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

  36. We have proven in 34 and 35 that sin2A+sin2B+sin2C=4sinAsinBsinC\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C and cosA+cosB+cosC1=4sinA2sinB2sinC2\cos A + \cos B + \cos C - 1 = 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} respectively. Thus,

    sin2A+sin2B+sin2CcosA+cosB+cosC1=4sinAsinBsinC4sinA2sinB2sinC2\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1} = \frac{4\sin A\sin B\sin C}{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}

    =4.2sinA2cosA2.2sinB2cosB2.2sinC2cosC24sinA2sinB2sinC2= \frac{4.2\sin\frac{A}{2}\cos\frac{A}{2}.2\sin\frac{B}{2}\cos\frac{B}{2}.2\sin\frac{C}{2}\cos\frac{C}{2}}{4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}}

    =8cosA2cosB2cosC2= 8\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

  37. L.H.S. =(cosA2+cosB2)+cosC2= \left(\cos \frac{A}{2} + \cos\frac{B}{2}\right) + \cos\frac{C}{2}

    =2cosA+B4cosAB4+sinπC2= 2\cos\frac{A + B}{4}\cos\frac{A - B}{4} + \sin\frac{\pi - C}{2}

    =2cosπC4cosAB4+2sinπC4cosπC4= 2\cos\frac{\pi - C}{4}\cos\frac{A - B}{4} + 2\sin\frac{\pi - C}{4}\cos\frac{\pi - C}{4}

    =2cosπC4[cosAB4+cos(π2πC4)]= 2\cos\frac{\pi - C}{4}\left[\cos\frac{A - B}{4} + \cos\left(\frac{\pi}{2} - \frac{\pi - C}{4}\right)\right]

    =2cosπC42cosπ+A+CB8cosπ+CA+B8= 2\cos\frac{\pi - C}{4}2\cos\frac{\pi + A + C - B}{8}\cos\frac{\pi + C - A + B}{8}

    =4cosπA4cosπB4cosπC4= 4\cos\frac{\pi - A}{4}\cos\frac{\pi - B}{4}\cos\frac{\pi - C}{4}

  38. L.H.S. =(sinA2+sinB2)+sinC2= \left(\sin\frac{A}{2} + \sin \frac{B}{2}\right) + \sin\frac{C}{2}

    =2sinA+B4cosAB4+cosπC2= 2\sin\frac{A + B}{4}\cos\frac{A - B}{4} + \cos\frac{\pi - C}{2}

    =2sinπC4cosAB4+12sin2πC4= 2\sin\frac{\pi - C}{4}\cos\frac{A - B}{4} + 1 - 2\sin^2\frac{\pi - C}{4}

    =1+2sinπC4[cosAB4sinπC4]=1 + 2\sin\frac{\pi - C}{4}\left[\cos\frac{A - B}{4} - \sin\frac{\pi - C}{4}\right]

    =1+2sinπC4[cosAB4cosπ+C4]= 1 + 2\sin\frac{\pi - C}{4}\left[\cos\frac{A - B}{4} - \cos\frac{\pi + C}{4}\right]

    =1+2sinπC4.2sinπ+A+CB8sinπ+CA+B8= 1 + 2\sin\frac{\pi - C}{4}.2\sin\frac{\pi + A + C - B}{8}\sin\frac{\pi + C - A + B}{8}

    =1+4sinB+C4sinC+A4sinA+B4= 1 + 4\sin \frac{B + C}{4}\sin \frac{C + A}{4}\sin \frac{A + B}{4}

  39. L.H.S. =1cosA2+1cosB21cosC2= \frac{1 - \cos A}{2} + \frac{1 - \cos B}{2} - \frac{1 - \cos C}{2}

    =1212[cosA+cosBcosC]= \frac{1}{2} - \frac{1}{2}[\cos A + \cos B - \cos C]

    cosA+cosBcosC=2cosA+B2cosAB2cosC\cos A + \cos B - \cos C = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} - \cos C

    =2sinC2cosAB21+2sin2C2= 2\sin\frac{C}{2}\cos\frac{A - B}{2} - 1 + 2\sin^2\frac{C}{2}

    =1+2sinC2[cosAB2+sinC2]= -1 + 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} + \sin\frac{C}{2}\right]

    =1+2sinC2[cosAB2+cosA+B2]= -1 + 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} + \cos\frac{A + B}{2}\right]

    =1+2sinC2.2cosA2cosB2= -1 + 2\sin\frac{C}{2}.2\cos\frac{A}{2}\cos\frac{B}{2}

    =1+4cosA2cosB2sinC2= -1 + 4\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}

    Thus, L.H.S. =12cosA2cosB2sinC2= 1 - 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}

  40. L.H.S. =1+cos56+(cos58cos66)= 1 + \cos56^\circ + (\cos58^\circ - \cos66^\circ)

    =2cos228+2sin62sin4= 2\cos^228^\circ + 2\sin62^\circ\sin4^\circ

    =2cos228+2cos28sin4=2\cos^228^\circ + 2\cos28^\circ\sin4^\circ

    =2cos28[sin4+cos28]= 2\cos28^\circ[\sin4^\circ + \cos28^\circ]

    =4cos28cos29sin33= 4\cos28^\circ\cos29^\circ\sin33^\circ

  41. Given A+B+C=π,A + B + C = \pi, we have to prove that cos2A+cos2Bcos2C=14sinAsinBcosC\cos 2A + \cos 2B - \cos 2C = 1 - 4\sin A\sin B\cos C

    L.H.S. =cos2A+cos2Bcos2C=cos2A+cos2Bcos[2π2(A+B)]=\cos 2A + \cos 2B - \cos 2C = \cos 2A + \cos 2B - \cos[2\pi - 2(A + B)]

    =2cos(A+B)cos(AB)cos2(A+B)=2cos(A+B)cos(AB)2cos2(A+B)+1= 2\cos(A + B)\cos(A - B) - \cos2(A + B) = 2\cos(A + B)\cos(A - B) - 2\cos^2(A + B) + 1

    =1+2cos(A+B)[cos(AB)cos(A+B)]= 1 + 2\cos(A + B)[\cos(A - B) - \cos(A + B)]

    =14sinAsinBcosC[cos(A+B)=cos(πC)=cosC]= 1 - 4\sin A\sin B\cos C[\because\cos(A + B) = \cos(\pi - C) = -\cos C]

  42. Given A+B+C=π,A + B + C = \pi, we have to prove that sin2A+sin2Bsin2C=4cosAcosBsinC\sin 2A + \sin 2B - \sin 2C = 4\cos A\cos B\sin C

    L.H.S. =sin2A+sin2Bsin2C=2sin(A+B)cos(AB)2sinCcosC= \sin 2A + \sin 2B - \sin 2C = 2\sin(A + B)\cos(A - B) - 2\sin C\cos C

    [sin(A+B)=sin(πC)=sinC,cosC=cos[π(A+B)]=cos(A+B)][\because \sin(A + B) = \sin(\pi - C) = \sin C, \cos C = \cos[\pi - (A + B)] = -\cos(A + B)]

    =2sinC[cos(AB)+cos(A+B)]=2\sin C[\cos(A - B) + \cos(A + B)]

    =4cosAcosBsinC= 4\cos A\cos B\sin C

  43. Given A+B+C=π,A + B + C = \pi, we have to prove that sinA+sinB+sinC=4cosA2cosB2cosC2\sin A + \sin B + \sin C = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}

    L.H.S. =sinA+sinB+sinC=2sinA+B2cosAB2+2sinC2cosC2= \sin A + \sin B + \sin C = 2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    =2sinπC2cosAB2+2sinC2cosC2= 2\sin\frac{\pi - C}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}

    =2cosC2cosAB2+2sinπAB2cosC2= 2\cos\frac{C}{2}\cos\frac{A - B}{2} + 2\sin\frac{\pi - A - B}{2}\cos\frac{C}{2}

    =2cosC2[cosAB2+cosA+B2]= 2\cos\frac{C}{2}[\cos\frac{A - B}{2} + \cos\frac{A + B}{2}]

    =4cosA2cosB2cosC2= 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

  44. L.H.S. =cosA+cosBcosC=2cosA+B2cosAB21+2sin2C2= \cos A + \cos B - \cos C = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} - 1 + 2\sin^2\frac{C}{2}

    =2cos(πC2)cosAB2+2sin2C21= 2\cos\left(\frac{\pi - C}{2}\right)\cos\frac{A - B}{2} + 2\sin^2\frac{C}{2} - 1

    =2sinC2[cosAB2+cos([pi2C2)]1= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} + \cos\left(\frac{[pi}{2} - \frac{C}{2}\right)\right] - 1

    =2sinC2[cosAB2+cosA+B2]1= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} + \cos\frac{A + B}{2}\right] - 1

    =4cosA2cosB2sinC21= 4\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2} - 1

  45. B+CA=πAA=π2A,C+AB=π2B,A+BC=π2CB + C - A = \pi - A - A = \pi - 2A, C + A - B = \pi - 2B, A + B - C = \pi - 2C

    \Rightarrow L.H.S. =sin2A+sin2B+sin2C= \sin 2A + \sin 2B + \sin 2C

    We have proven in problem 34 that sin2A+sin2B+sin2C=4sinA</