∵A+B+C=π∴A+B=π−C
⇒cos(A+B)=cos(π−C)=cosC⇒sinAsinB−cosC=cosAcosB
⇒(sinAsinB−cosC)2=cos2Acos2B
⇒sin2Asin2B+cos2C−2sinAsinBcosC=(1−sin2A)(1−sin2B)
⇒sinA+sin2B+cos2C−1=2sinAsinBcosC
⇒sin2A+sin2B−cos2C=2sinAsinBcosC
A+B+C=180∘⇒2A+2B+2C=90∘⇒2A+2B=90∘−2C
⇒cos(2A+2B)=cos(90∘−2C)
⇒cos2Acos2B−sin2Asin2B=sin2C
⇒sin2C+sin2Asin2B=cos2Acos2B
⇒(sin2C+sin2Asin2B)2=cos22Acos22B
⇒sin22C+sin22Asin22B+2sin2Asin2Bsin2C=(1−cos22A)(1−cos22B)
sin22A+sin22B+sin22C=1−2sin2Asin2Bsin2C
Let A+B=C⇒cos(A+B)=cosC
⇒sinAsinB+cosC=cosAcosB⇒(sinAsinB+cosC)2=cos2Acos2B
⇒sin2Asin2B+cos2C+2sinAsinBcosC=(1−sin2A)(1−sin2B)
⇒sin2A+sin2B+2sinAsinBcosC=sin2C
⇒sin2A+sin2B+2sinAsinBcos(A+B)=sin2(A+B)
Given, A+B+C=180∘⇒A+B=180∘−C⇒cos(A+B)=−cosC
⇒cosAcosB+cosC=sinAsinB⇒(cosAcosB+cosC)2=sin2Asin2B
⇒cos2Acos2B+cos2C+2cosAcosBcosC=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C+2cosAcosBcosC=1
We have just proved that cos2A+cos2B+cos2C+2cosAcosBcosC=1
⇒3−sin2A−sin2B−sin2C+2cosAcosBcosC=1
⇒sin2A+sin2B+sin2C=2(1+cosAcosBcosC)
Given, A+B+C=180∘⇒A+B=180∘−C⇒cos(A+B)=−cosC
⇒cosAcosB=sinAsinB−cosC⇒cos2Acos2B=sin2Asin2B+cos2C−2sinAsinBcosC
⇒cos2Acos2B=(1−cos2A)(1−cos2B)+cos2C−2sinAsinBcosC
⇒cos2A+cos2B−cos2C=1−2sinAsinBcosC
Given, A+B+C=180∘⇒2A+B+C=90∘
⇒cos(2A+2B)=sin2C
⇒cos2Acos2B−sin2C=sin2Asin2B
⇒cos22Acos22B+sin22C−2cos2Acos2Bsin2C=(1−cos22A)(1−cos22B)
⇒cos22A+cos22B−cos22C=2cos2Acos2Bsin2C
Given, A+B+C=180∘⇒2A+B+C=90∘
⇒cos(2A+2B)=sin2C
⇒cos2Acos2B=sin2Asin2B+sin2C
⇒cos22Acos22B=sin22Asin22B+sin22C+2sin2Asin2Bsin2C
⇒cos22Acos22B=(1−cos22A)(1−cos22B)+sin22C+2sin2Asin2Bsin2C
cos22A+cos22B+cos22C=2+2sin2Asin2Bsin2C
Given, A+B+C=2π⇒A+B=2π−C⇒cos(A+B)=sinC
⇒cosAcosB=sinAsinB+sinC
⇒cos2Acos2B=sin2Asin2B+sin2C+2sinAsinBsinC
⇒(1−sin2A)(1−sin2B)=sin2Asin2B+sin2C+2sinAsinBsinC
⇒sin2A+sin2B+sin2C=1−2sinAsinBsinC
We have just proven that sin2A+sin2B+sin2C=1−2sinAsinBsinC in previous problem.
⇒1−cos2A+1−cos2B+1−cos2C=1−2sinAsinBsinC
⇒cos2A+cos2B+cos2C=2+2sinAsinBsinC
Givem A+B+C=2π⇒A+B=2π−C⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C−2cosAcosBcosC=1
Given A+B=C⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B
⇒cos2Acos2B+cos2C−2cosAcosBcosC=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C−2cosAcosBcosC=1
Given A+B=3π⇒cos(A+B)=cos3π=21
⇒cosAcosB−21=sinAsinB
⇒cos2Acos2B−cosAcosB+41=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B−cosAcosB=43
From problem 12 we have A+B=C and cos2A+cos2B+cos2C−2cosAcosBcosC=1
Substituting C=A+B we get cos2A+cos2B+cos2(A+B)−2cosAcosBcos(A+B)=1
⇒cos2B+cos2(A+B)−2cosAcosBcos(A+B)=1−cos2A=sin2A which is independent of
B
Given A+B+C=π and A+B=2C⇒C=3π⇒A+B=π−3pi
cos(A+B)=−cos3π⇒cosAcosB=sinAsinB−21
⇒cos2Acos2B=sin2Asin2B−sinAsinB+41
⇒(1−sin2A)(1−sin2B)=sin2Asin2B−sinAsinB+41
⇒4(sin2A+sin2B−sinAsinB)=3
Given A+B+C=2π⇒cos(B+C)=cos(2π−A)=cosA
⇒cosBcosC−cosA=sinBsinC
⇒cosBcos2C+cos2A−2cosAcosBcosC=sin2Bsin2C=(1−cos2B)(1−cos2C)
⇒cos2B+cos2C−sin2A−2cosAcosBcosC=0
Given A+B+C=0⇒cos(A+B)=cosC
⇒cosAcosB−cosC=sinAsinB
⇒cos2Acos2B+cos2C−2cosAcosBcosC=sin2Asin2B=(1−cos2A)(1−cos2B)
⇒cos2A+cos2B+cos2C=1+2cosAcosBcosC
Putting A=B−C,B=C−A and C=A−B in 17 we can obtain the desired result.
Given A+B+C=π, we have to prove that sinAcosBcosC+sinBcosCcosA+sinCcosAcosB=sinAsinBsinC
Dividing both sides by sinAsinBsinC, we get
cotBcotC+cotCcotA+cotAcotB=1
A+B=π−C⇒cot(A+B)=−cotC
⇒cotA+cotBcotAcotB−1=−cotC
⇒cotBcotC+cotCcotA+cotAcotB=1
Given, A+B+C=π⇒A+B=π−C
⇒tan(A+B)=tan(π−C)=−tanC
⇒1−tanAtanBtanA+tanB=−tanC
⇒tanA+tanB+tanC=tanAtanBtanC
Given A+B+C=π⇒2A+B=2π−C
⇒tan2A+B=tan2π−C
⇒1−tan2Atan2Btan2A+tan2B=cot2C=tan2C1
⇒tan2Atan2B+tan2Btan2C+tan2Ctan2A=1
Let B+C−A=α,C+A−B=β,A+B−C=γ
α+β+γ=A+B+C=π
We have just proven that if A+B+C=π then ⇒tanA+tanB+tanC=tanAtanBtanC
Thus, substituting we get, ⇒tanα+tanβ+tanγ=tanαtanβtanγ
⇒tan(B+C−A)+tan(C+A−B)+tan(A+B−C)=tan(B+C−A)tan(C+A−B)tan(A+B−C)
Given A+B+C=π⇒A+B=π−C⇒cot(A+B)=cot(π−C)
⇒cotA+cotBcotAcotB−1=−cotC
⇒cotBcotC+cotCcotA+cotAcotB=1
From previosu problem if A+B+C=π then ⇒cotBcotC+cotCcotA+cotAcotB=1
Given cotA+cotB+cotC=3
⇒cot2A+cot2B+cot2C+2(cotAcotB+cotBcotC+cotCcotA)=3
cot2A+cot2B+cot2C=1
2cot2A+2cot2B+2cot2C−2=0
2cot2A+2cot2B+2cot2C−2(cotAcotB+cotBcotC+cotCcotA)=0
(cotA−cotB)2+(cotB−cotC)2+(cotC−cotA)2=0
This is possible only if cotA−cotB=0 i.e. cotA=cotB, cotB−cotC=0 i.e. cotB=cotC and cotC−cotA=0 i.e. cotC=cotA
∴cotA=cotB=cotC⇒A=B=C
∵A+B+C+D=2π⇒A+B=2π−C−D
⇒tan(A+B)=−tan(C+D)
⇒1−tanAtanBtanA+tanB=−1−tanCtanDtanC+tanD
⇒(tanA+tanB)(1−tanCtanD)=−(1−tanAtanB)(tanC+tanD)
⇒tanA+tanB+tanC+tanD=tanAtanBtanC+tanAtanCtanD+tanAtanBtanD+tanBtanCtanD
Dividing both sides by tanAtanBtanCtanD, we get
tanAtanBtanCtanDtanA+tanB+tanC+tanD=tanA1+tanB1+tanC1+tanD1
⇒cotA+cotB+cotC+cotDtanA+tanB+tanC+tanD=tanAtanBtanCtanD
Given A+B+C=2π⇒A+B=2π−C
⇒cot(A+B)=cot(2π−C)
⇒cotA+cotBcotAcotB−1=tanC=cotC1
⇒cotA+cotB+cotC=cotAcotBcotC
We have just proven in 26 that ⇒cotA+cotB+cotC=cotAcotBcotC
Dividing both sides by cotAcotBcotC, we get
tanAtanB+tanBtanC+tanCtanA=1
Given A+B+C=π⇒3(A+B+C)=3π⇒3A+3B=3π−3C
⇒tan(3A+3B)=tan(3π−3C)=−tan3C
⇒1−tan3Atan3Btan3A+tan3B=−tan3C
⇒tan3A+tan3B+tan3C=tan3Atan3Btan3C
Given A+B+C=π⇒2A+B=2π−C
⇒cot2A+B=cot2π−C
⇒cot2A+cot2Bcot2Acot2B−1=tan2C=cot2C1
⇒cot2A+cot2B+cot2C=cot2Acot2Bcot2C
We have to prove that tanA+tanBcotA+cotB+tanB+tanCcotB+cotC+tanC+tanAcotC+cotA=1
Putting tanA=cotA1,tanB=cotB1,tanC=cotC1, we get
cotAcotB+cotBcotC+cotCcotA=1
We have already proven above in problem 19.
Let A−B=α,B−C=β,C−A=γ, then
α+β+γ=0
⇒tan(α+β)=−tanγ
⇒1−tanαtanβtanα+tanβ=−tanγ
tanα+tanβ+tanγ=tanαtanβtanγ
Substituting back the values, we get
tan(A−B)+tan(B−C)+tan(C−A)=tan(A−B)tan(B−C)tan(C−A)
We have already proven in problem 19 that if A+B+C=0, then
cotAcotB+cotBcotC+cotCcotA=1
Let A=x+y−z,B=z+x−y,C=y+z−x, then
A+B+C=x+y+z=0
⇒cotAcotB+cotBcotC+cotCcotA=1
Substituting back the values, we get
cot(x+y−z)cot(z+x−y)+cot(x+y−z)cot(y+z−x)+cot(y+z−x)cot(z+x−y)=1
Given A+B+C=nπ⇒tan(A+B)=tan(nπ−C)=−tanC
⇒1−tanAtanBtanA+tanB=−tanC
⇒tanA+tanB+tanC=tanAtanBtanC
L.H.S =(sin2A+sin2B)+sin2C=2sin(A+B)cos(A−B)+sin2C
=2sin(π−C)cos(A−B)+sin2C=2sinCcos(A−B)+2sinCcosC
=2sinC[cos(A−B)+cos{π−(A+B)}]=2sinC[cos(A−B)−cos(A+B)]
=4sinAsinBsinC
L.H.S. =(cosA+cosB)+cosC−1=2cos2A+Bcos2A−B+cosC−1
=2cos(2π−2C)cos2A−B+cosC−1
=2sin2Ccos2A−B+1−2sin22C−1
=2sin2C[cos2A−B−sin2C]
=2sin2C[cos2A−B−sin(2π−2A+B)]
=2sin2C[cos2A−B−cos2A+B]
=4sin2Asin2Bsin2C
We have proven in 34 and 35 that sin2A+sin2B+sin2C=4sinAsinBsinC and cosA+cosB+cosC−1=4sin2Asin2Bsin2C respectively. Thus,
cosA+cosB+cosC−1sin2A+sin2B+sin2C=4sin2Asin2Bsin2C4sinAsinBsinC
=4sin2Asin2Bsin2C4.2sin2Acos2A.2sin2Bcos2B.2sin2Ccos2C
=8cos2Acos2Bcos2C
L.H.S. =(cos2A+cos2B)+cos2C
=2cos4A+Bcos4A−B+sin2π−C
=2cos4π−Ccos4A−B+2sin4π−Ccos4π−C
=2cos4π−C[cos4A−B+cos(2π−4π−C)]
=2cos4π−C2cos8π+A+C−Bcos8π+C−A+B
=4cos4π−Acos4π−Bcos4π−C
L.H.S. =(sin2A+sin2B)+sin2C
=2sin4A+Bcos4A−B+cos2π−C
=2sin4π−Ccos4A−B+1−2sin24π−C
=1+2sin4π−C[cos4A−B−sin4π−C]
=1+2sin4π−C[cos4A−B−cos4π+C]
=1+2sin4π−C.2sin8π+A+C−Bsin8π+C−A+B
=1+4sin4B+Csin4C+Asin4A+B
L.H.S. =21−cosA+21−cosB−21−cosC
=21−21[cosA+cosB−cosC]
cosA+cosB−cosC=2cos2A+Bcos2A−B−cosC
=2sin2Ccos2A−B−1+2sin22C
=−1+2sin2C[cos2A−B+sin2C]
=−1+2sin2C[cos2A−B+cos2A+B]
=−1+2sin2C.2cos2Acos2B
=−1+4cos2Acos2Bsin2C
Thus, L.H.S. =1−2cos2Acos2Bsin2C
L.H.S. =1+cos56∘+(cos58∘−cos66∘)
=2cos228∘+2sin62∘sin4∘
=2cos228∘+2cos28∘sin4∘
=2cos28∘[sin4∘+cos28∘]
=4cos28∘cos29∘sin33∘
Given A+B+C=π, we have to prove that cos2A+cos2B−cos2C=1−4sinAsinBcosC
L.H.S. =cos2A+cos2B−cos2C=cos2A+cos2B−cos[2π−2(A+B)]
=2cos(A+B)cos(A−B)−cos2(A+B)=2cos(A+B)cos(A−B)−2cos2(A+B)+1
=1+2cos(A+B)[cos(A−B)−cos(A+B)]
=1−4sinAsinBcosC[∵cos(A+B)=cos(π−C)=−cosC]
Given A+B+C=π, we have to prove that sin2A+sin2B−sin2C=4cosAcosBsinC
L.H.S. =sin2A+sin2B−sin2C=2sin(A+B)cos(A−B)−2sinCcosC
[∵sin(A+B)=sin(π−C)=sinC,cosC=cos[π−(A+B)]=−cos(A+B)]
=2sinC[cos(A−B)+cos(A+B)]
=4cosAcosBsinC
Given A+B+C=π, we have to prove that sinA+sinB+sinC=4cos2Acos2Bcos2C
L.H.S. =sinA+sinB+sinC=2sin2A+Bcos2A−B+2sin2Ccos2C
=2sin2π−Ccos2A−B+2sin2Ccos2C
=2cos2Ccos2A−B+2sin2π−A−Bcos2C
=2cos2C[cos2A−B+cos2A+B]
=4cos2Acos2Bcos2C
L.H.S. =cosA+cosB−cosC=2cos2A+Bcos2A−B−1+2sin22C
=2cos(2π−C)cos2A−B+2sin22C−1
=2sin2C[cos2A−B+cos(2[pi−2C)]−1
=2sin2C[cos2A−B+cos2A+B]−1
=4cos2Acos2Bsin2C−1
B+C−A=π−A−A=π−2A,C+A−B=π−2B,A+B−C=π−2C
⇒ L.H.S. =sin2A+sin2B+sin2C
We have proven in problem 34 that