Let tan−1(−1)=θ then tanθ=−1. Also, −2π<θ<2π
The only value in this range which satisfied this equation is −4π.
Let cot−1(−1)=θ, then cotθ=−1 and 0<θ<π
⇒θ=43π
Let sin−1(−23)=θ then sinθ=−23
Also, −2π≤θ≤2π⇒θ=−3π
sin[3π−sin−1(−21)]
=sin[3π−{−sin−121}]
=sin[3π+6π]=1
sin[cos−1(−21)]=sin[π−cos−121]
=sin32π=23
sin[tan−1(−3)+cos−12−3]
=sin[−3π+π−6π]
=sin2π=1
Given expression is tan[21cos−135]
Let cos−135=2θ then cos2θ=35
⇒1+tan2θ1−tan2θ=35
By componendo and dividendo 22tan2θ=3+53−5
⇒tanθ=±(23−5)
Given 0≤2θ≤π⇒0≤θ≤2π
i.e. θ lies in first quadrant. ⇒tanθ=23−5
Given expression is sin−1(sin32π)
Let sin−1(sin32π)=θ
then sinθ=sin32π and −2π≤θ≤2π
=sin(π−3π)=sin3π⇒θ=3π
sin−1(sin32π)=3π
Let sin−123=θ⇒sinθ=23
⇒θ=3π −2π≤θ≤2π
Let tan−13−1=θ
then tanθ=3−1=tan(3−π)
⇒θ=−3π
Let cot−1(−3)=θ⇒cotθ=−3
cotθ=cot(π−6π)
θ=65π
Let cot−1cot45π=θ⇒cotθ=cot(π+4π)
cotθ=cot4π⇒θ=4π
Let tan−1(tan43π)=θ
⇒tanθ=tan43π=tan(π−4π)
⇒θ=−4π
sin−121+cos−121=6π+3π=2π
Let tan−1=θ⇒tanθ=43⇒cosθ=54
cos[cos−1(23)+6π]
=cos[6π+6π]=cos3π=21
L.H.S. =2tan−131+tan−171
=tan−11−912∗31+tan−171
=tan−143+tan−171
=tan−11−28343+71=tan−11=4π= R.H.S.
L.H.S. =tan−131+tan−171+tan−151+tan−181
=tan−11−21131+71+tan−11−40151+81
=tan−121+tan−131=tan−11=4π= R.H.S.
L.H.S. =sin−154+sin−1135+sin−16516
=sin−1(541−16925+1351−2516)+sin−16516
=sin−1(6548+6515)+sin−16516=sin−16564+sin−16516
=sin−1(6563.1−652162+65161−652632)
sin−1652632+162=sin−1=2π= R.H.S.
We have to prove that 4tan−151−tan−1701+tan−1991=4π
⇒4tan−151=4π+tan−1701−tan−1991
L.H.S. =4tan−151=2tan−11−2512.51=2tan−1125
=tan−11−144252.125=tan−1119120
tan−1701−tan−1991=tan−11+701.991701−991
=tan−12391
R.H.S. =tan−11+tan−12391=tan−1119120
Thus, L.H.S. = R.H.S.
We have to prove that cot−19+cosec−1441=4π
cot−19=tan−191
Let cosec−1441=θ⇒cosecθ=441
Since we have to consider principal values only −2π≤θ≤2π and θ=0
As cosecθ is +ve here, θ lies between 0 and π/2, hence tanθ must be
positive.
⇒tanθ=54
tan−191+tan−154=tan−11−915491+54
=tan−14541.4145=tan−11=4π= R.H.S.
We have to prove that 4(cot−13+cosec−15)=π
cot−13=tan−131
cosec−15=tan−121
L.H.S. =4(tan−131+tan−121)=4(tan−11−21.3121+31)
=4tan−11=π= R.H.S.
We have to prove that tan−1x=2tan−1[cosectan−1x−tancot−1x]
R.H.S. =2tan−1[coseccosec−1x1+x2−tantan−1x1]
=2tan−1(x1+x2−1)
Let x=tanθ, then R.H.S. =2tan−1(tanθsecθ−1)
=2tan−1(sinθ1−cosθ)=2tan−1(2sin2θcos2θ2sin22θ)
=2tan−1.tan2θ=θ=tan−1x= L.H.S.
∵0<b≤a∴a+ba−b is real.
L.H.S. =2tan−1[a+ba−btan2x]
=cos−1[1+a+ba−btan22x1−a+ba−btan22x]
=cos−1[a(1+tan22x)+b(1+tan22x)a(1−tan22x)+b(1+tan22x)]
=cos−1a+b1+tan22x1−tan22xa(1+tan22x+b1−tan22x)
=cos−1[a+bcosxb+acosx]= R.H.S.
L.H.S =tan−11+xyx−y+tan−11+yzy−z+tan−11+zxz−x
=tan−1x−tan−1y+tan−1y−tan−1z+tan−1z−tan−1x=0
R.H.S. =tan−1(1+x2y2x2−y2)+tan−1(1+y2z2y2−z2)+tan−1(1+z2x2z2−x2)
=tan−1x2−tan−1y2+tan−1y2−tan−1z2+tan−1z2−tan−1x2=0
∴ L.H.S. = R.H.S.
We have to prove that sincot−1tancos−1x=x
L.H.S. =sincot−1tantan−1x1−x2
=sincot−1x1−x2
Let cot−1x1−x2=θ then cotθ=x1−x2
sinθ=x
Thus, L.H.S. = R.H.S.
Case I: When 4π<x<2π
0<cotx<1 and 0<cot3x<1∴0<cotxcot3x<1
tan−1cotx+tan−1cot3x=tan−11−cotxcot3xcotx+cot3x
=tan−11−cot2xcotx=tan−1tan2−1tanx
=−tan−1(21tan2x)
⇒tan−1(21tan2x)+tan−1cotx+tan−1cot3x=0
Case II: When 0<x<4π
cotx>1 and cot3x>1
⇒tan−1cotx+tan−1cot3x=π−tan−1(21tan2x)
⇒tan−1(21tan2x)+tan−1cotx+tan−1cot3x=π
tan−121+tan−131=tan−11−21.3121+31
=tan−15/65/6=tan−11=4π
tan−153+tan−141=tan−11−53.4153+41
=tan−117/2017/20=tan−11=4π
We have to prove that tan−13b2a−b+tan−13a2b−a=3π
L.H.S. =tan−11−3ab(2a−b)(2b−a)3b2a−b+3a2b−a
=tan−13ab3ab−4ab+2a2+2b2−ab3ab23a2−3ab+23b2−3ab
=tan−12a2+2b2−2ab2a2+23b2−23ab=tan−13=3π
We have to prove that tan−152+tan−131+tan−1121=4π
L.H.S. =tan−152+tan−11−31.12131+121
=tan−152+tan−135/365/12=tan−152+tan−173
=tan−11−52.7352+73
=tan−129/3529/35=tan−11=4π
We have to prove that 2tan−151+tan−141=tan−14332
L.H.S. =tan−11−5212.51+tan−141
=tan−1125+tan−141
=tan−11−125.41125+41
=tan−143/482/3=tan−14332
We have to prove that tan−11+tan−12+tan−13=π=2(tan−11+tan−121+tan−131)
tan−11+tan−12+tan−13=tan−11+tan−11−2.32+3=tan−11+tan−1(−1)
=tan−11+11−1=tan−10=nπ
2(tan−11+tan−121+tan−131)
=2(tan−11+tan−11−21.3121+21)
=2(4π+tan−11)=2.2π=π
Thus, the above expression will have principal value as pi.
We have to prove that tan−1x+cot−1y=tan−1y−xxy+1
L.H.S. =tan−1x+cot−1y=tan−1x+tan−1y1
=tan−11−x.y1x+y1=tan−1y−xxy+1
We have to prove that tan−1x+y1+tan−1x2+xy+1y=cot−1x
L.H.S. =tan−1x+y1+tan−1x2+xy+1y
=tan−11−x+y1.x2+xy+1yx+y1+x2+xy+1y
=tan−1x3+2x2y+xy2+xx2+2xy+y2+1=tan−1x1=cot−1x
We have to prove that 2cot−15+cot−17+2cot−18=π/4
We know that cot−1x+cot−1y=x+yxy−1
∴2(cot−15+cot−18)=2cot−11339=2cos−13=cot−134
∴2cot−15+cot−17+2cot−18=cot−134+cot−17
=cot−1325328−1=cot−11=π/4
We have to prove that tan−11+aba−b+tan−11+bcb−c+tan−11+cac−a=0
L.H.S. =tan−1a−tan−1b+tan−1b−tan−1c+tan−1c−tan−1a=0
We have to prove that tan−11+a3b3a3−b3+tan−11+b3c3b3−c3+tan−11+c3a3c3−a3=0
L.H.S. =tan−1a3−tan−1b3+tan−1b3−tan−1c3+tan−1c3−tan−1a3=0
We have to prove that cot−1y−xxy+1+cot−1z−yyz+1+cot−1z=tan−1x1
L.H.S. =cot−1x−cot−1y+cot−1y−cot−1z+cot−1z=cot−1x=tan−1x1
We have to prove that cos−1(1+cosθcosϕcosθ+cosϕ)=2tan−1(tan2θtan2ϕ)
L.H.S. =cos−1(1+cosθcosϕcosθ+cosϕ)
=tan−1cosθ+cosϕ1+cos2θcos2ϕ+2cosθcosϕ−cos2θcos2ϕ−2cosθcosϕ
=tan−1cosθ+cosϕ(1−cos2θ)(1−cos2ϕ)=tan−1cosθ+cosϕsinθsinϕ
R.H.S. =2tan−1(tan2θtan2ϕ)
=tan−11−tan22θtan22ϕ2tan2θtan2ϕ
=tan−1cos22θcos22ϕ−sin22θsin22ϕ2tan2θtan2ϕ.cos22θcos22ϕ
=tan−121.cos22θcos22ϕ−(1−cos22θ)(1−cos22ϕ)sinθsinϕ
=tan−1cosθ+cosϕsinθsinϕ
We have to prove that sin−153+sin−1178=sin−18577
L.H.S. =sin−153+sin−1178
=sin−1(531−17282+1781−5232)
=sin−1(53.1715+178.54)
sin−1(8545+32)=sin−18577= R.H.S.
We have to prove that cos−153+cos−11312+cos−16563=2π
We know that cos−1x+cos−1y=xy−(1−x2)(1−y2)
L.H.S. =cos−153+cos−11312+cos−16563
=cos−1(53.1312−(1−5232)(1−132122))+cos−16563
=cos−1(6536−54.135)+cos−16563
=cos−1(6536−6520)+cos−16563
=cos−16516+cos−16563
=cos−1(6516.6463−(1−652162)(1−652632))
=cos−10=2π= R.H.S.
We have to prove that sin−1x+sin−1y=cos−1(1−x21−y2−xy)
L.H.S. =sin−1x+sin−1y=cos−11−x2+cos−11−y2
=cos1−(1−x21−y2−[1−(1−x2)][1−(1−y2)])
=cos−1(1−x21−y2−xy)= R.H.S.
We have to prove that 4(sin−1101+cos−152)=π
or sin−1101+cos−152=π/4
L.H.S.