22. Properties of Triangles’ Solutions Part 5#

  1. Let the sides of the cyclid quadrilateral ABCDABCD having sides AB=3,BC=3,CD=4,DA=4.AB = 3, BC = 3, CD = 4, DA = 4.

    Join BB with D.D. Clearly, BDBD is diameter of circum-circle so it will subtend a right-angle at AA and C.C.

    Clearly ABDBCD\triangle ABD\cong \triangle BCD

    BD=32+42=5\therefore BD = \sqrt{3^2 + 4^2} = 5

    Thus, radius of the circumcircle =2.5= 2.5 cm

    Also, AD+BC=AB+CDAD + BC = AB + CD

    \therefore Area of the quadrilateral =abcd=12= \sqrt{abcd} = 12 sq. cm.

    We know that 12=rsr=12/712 = rs \Rightarrow r = 12/7 cm where rr is radius of in-circle.

  2. Let the quadrilateral be ABCDABCD and let points be E,F,G,H,I,J,K,LE, F, G, H, I, J, K, L on sides in order.

    EF=FG=GH=HI=IJ=JK=KL=LE=x\therefore EF=FG=GH=HI=IJ=JK=KL=LE=x

    By symmetry, AE=AL=BG=BF=CH=CI=DJ=DK=aAE=AL=BG=BF=CH=CI=DJ=DK=a

    Using Pythagoras theorem in ALE,\triangle ALE,

    LE2=AL2+AE2x2=2aLE^2 = AL^2 + AE^2 \Rightarrow x^2 = \sqrt{2}a

    AB=a+x+a=2a+x=2\therefore AB = a + x + a = 2a + x = 2

    a=22+1\Rightarrow a = \frac{\sqrt{2}}{\sqrt{2} + 1}

    x=22+1\Rightarrow x = \frac{2}{\sqrt{2} + 1}

    Thus, length of each side of octagon is 22+1.\frac{2}{\sqrt{2} + 1}.

  3. Let the perimeter be 6a6a the sides of hexagon will be aa and sides of triangle will be 2a.2a.

    We know that for a regular polygon having nn sides with each side’s length aa the area is na24cotπn\frac{na^2}{4}\cot\frac{\pi}{n}

    Area of regular hexagon =6a24cot30=33a22= \frac{6a^2}{4}\cot30^\circ = \frac{3\sqrt{3}a^2}{2}

    Area of equilateral triangle =3.4a24cot60=3a2= \frac{3.4a^2}{4}\cot60^\circ = \sqrt{3}a^2

    \therefore Ratio of areas =2/3= 2/3

  4. Following the above problem n=3n = 3

  5. Ratio of areas =34= \frac{3}{4}

    \therefore Ratio of sides =32= \frac{\sqrt{3}}{2}

    \therefore Ratio of altitudes =3/2= \sqrt{3}/2

    sinθ=3/2\Rightarrow \sin\theta = \sqrt{3}/2

    θ=60,120\theta = 60^\circ, 120^\circ so it is an equilateral triangle and a hexogon.

  6. We know that angle of a polygon having nn sides is (n2)π/n(n - 2)\pi/n

    Let there be nn sides in one polygon and 2n2n in another.

    Ratio =2n2n2.n2n=98= \frac{2n - 2}{n - 2}.\frac{n}{2n} = \frac{9}{8}

    (n1)/n2=9/8n=102n=20(n - 1)/n - 2 = 9/8 \Rightarrow n = 10 \Rightarrow 2n = 20

  7. The diagram is given below:

    Problem 207

    The six touching circle will form a hexgon. The sector internal to hexgon is of angle 120.120^\circ. Side of hexagon will be double the radius of circles i.e. 2a2a as shown in figure.

    Area inside circles = Area of hexgon - 6*area of sector

    =3324a26.πa23=63a22πa2= \frac{3\sqrt{3}}{2}4a^2 - 6.\frac{\pi a^2}{3} = 6\sqrt{3}a^2 - 2\pi a^2

    =2a2(33π)= 2a^2(3\sqrt{3} - \pi)

  8. Let OO is the radius of circumcircle of the square. Given, AB=1,BD=3AB = 1, BD = \sqrt{3} Also, OA=OB=OD=1OA = OB = OD = 1

    Thus, for ABD,R=1,asinA=2R=2\triangle ABD, R = 1, \frac{a}{\sin A = 2R} = 2

    3sinA=2A=60\frac{\sqrt{3}}{\sin A} = 2 \therefore A = 60^\circ

    C=120circ\Rightarrow C = 120^circ [opposite angle in cyclic quadrilateral]

    By cosine law in ABD\triangle ABD

    3=1+x22xcos603 = 1 + x^2 - 2x\cos60^\circ

    x2x2=0x=2x^2 - x - 2 = 0 \Rightarrow x = 2

    Thus, Δ=334=121.2.sin60+12c.dsin60\Delta = \frac{3\sqrt{3}}{4} = \frac{1}{2}1.2.\sin60^\circ + \frac{1}{2}c.d\sin60^\circ

    cd=1\therefore cd = 1

    By cosine law in BCD,\triangle BCD,

    3=c2+d22cdcos120c2+d2=23 = c^2 + d^2 - 2cd\cos 120^\circ \Rightarrow c^2 + d^2 = 2

    c=d=1\Rightarrow c = d = 1

    BC=1,CD=1,AD=x=2BC = 1, CD = 1, AD = x = 2

  9. Let AB=a,BC=b,CD=c,DA=dAB = a, BC = b, CD = c, DA = d

    In ABC,\triangle ABC,

    AC2=a2+b22abcosBAC^2 = a^2 + b^2 - 2ab\cos B

    In ADC,\triangle ADC,

    AC2=c2+d22cdcosDAC^2 = c^2 + d^2 - 2cd\cos D

    B+D=πB + D = \pi [Angles opposite in a cyclic quadrilateral]

    AC2(ab+cd)=(a2+b2)cd+(c2+d2)ab\Rightarrow AC^2(ab + cd) = (a^2 + b^2)cd + (c^2 + d^2)ab

    Simirlarly, we can find BDBD and then we find that

    (AC.BD)2=(ac+bd)62(AC.BD)^2 = (ac + bd)62

    AC.BD=AB.CD+BC.AD\Rightarrow AC.BD = AB.CD + BC.AD

  10. Let pp be the perimeter of both the polygons. So the length of the sides will be p/np/n and p/2n.p/2n. Let A1A_1 and A2A_2 denote the areas for them.

    A1=14.n.p2n2cotπnA_1 = \frac{1}{4}.n.\frac{p^2}{n^2}\cot\frac{\pi}{n}

    A2=14.2n.p24n2cotπ2nA_2 = \frac{1}{4}.2n.\frac{p^2}{4n^2}\cot\frac{\pi}{2n}

    A1A2=2cotπncotπ2n\frac{A_1}{A_2} = \frac{2\cot\frac{\pi}{n}}{\cot\frac{\pi}{2n}}

    =2cosπn1+cosπ2n= \frac{2\cos\frac{\pi}{n}}{1 + \cos\frac{\pi}{2n}}

  11. Let P=sinA2sinB2sinC2P = \sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} and CC is fixed.

    P=12[cosAB2cosA+B2]sinC2P = \frac{1}{2}\left[\cos\frac{A - B}{2} - \cos\frac{A + B}{2}\right]\sin\frac{C}{2}

    =12[cosAB2sinC2]sinC2= \frac{1}{2}\left[\cos \frac{A - B}{2} - \sin\frac{C}{2}\right]\sin\frac{C}{2}

    As CC is fixed, the value PP will depend on the value of cosAB2\cos\frac{A - B}{2} and PP will be maxmimum when A=BA = B

    Similalry, when BB is fixed PP will be maxed when A=C,A = C, and when AA is fixed PP will be maxed when B=CB = C

    Thus, PP will be maximum when A=B=C=π/3A = B = C = \pi/3

    Pmax=1/8\Rightarrow P_{max} = 1/8

    Hence proved.

  12. Let AA be the arithmetic mean. Then A=cos(α+π2)+cos(β+π2)+cos(γ+π2)3A = \frac{\cos\left(\alpha + \frac{\pi}{2}\right) + \cos\left(\beta + \frac{\pi}{2}\right) + \cos\left(\gamma + \frac{\pi}{2}\right)}{3}

    =sinα+sinβ+sinγ3= -\frac{\sin\alpha + \sin\beta + \sin\gamma}{3}

    Clearly, sinα+sinβ+sinγ\sin\alpha + \sin\beta + \sin\gamma will be maximum when α=β=γ\alpha = \beta = \gamma as proved in last problem making AA minimum.

    α+β+γ=2π\alpha + \beta + \gamma = 2\pi

    Amin=3sin2π3.13=32A_{min} = 3\sin\frac{2\pi}{3}.\frac{1}{3} = \frac{\sqrt{3}}{2}

  13. Let tanA2=x,tanB2=y,tanC2=z\tan\frac{A}{2} = x, \tan\frac{B}{2} = y, \tan\frac{C}{2} = z

    We know that x2+y2+z2xyyzxz0x^2 + y^2 + z^2 - xy - yz - xz \geq 0

    x2+y2+z2xy+yz+xzx^2 + y^2 + z^2 \geq xy + yz + xz

    A+B+C=πA + B + C = \pi

    tan(A2+B2)=cotC2\Rightarrow \tan\left(\frac{A}{2} + \frac{B}{2}\right) = \cot\frac{C}{2}

    tanA2tanB2+tanB2tanC2+tanC2tanA2=1\Rightarrow \tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1

    xy+yz+xz=1\Rightarrow xy + yz + xz = 1

    x2+y2+z21\Rightarrow x^2 + y^2 + z^2 \geq 1

  14. Given, 2b=(m+1)am=2ba12b = (m + 1)a \Rightarrow m = \frac{2b}{a} - 1

    cosA=12(m1)(m+3)m\Rightarrow \cos A = \frac{1}{2}\sqrt{\frac{(m - 1)(m + 3)}{m}}

    b2+c2a22bc=12(2ba2)(2ba+2)m\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}\sqrt{\frac{\left(\frac{2b}{a} - 2\right)\left(\frac{2b}{a} + 2\right)}{m}}

    b2+c2a2(m+1)ac=1a(ba)(b+a)m\Rightarrow \frac{b^2 + c^2 - a^2}{(m + 1)ac} = \frac{1}{a}\sqrt{\frac{(b - a)(b + a)}{m}}

    c2m(m+1)p.c+p2m=0\Rightarrow c^2\sqrt{m} - (m + 1)p.c + p^2\sqrt{m} = 0

    This is a quadratic equation in cc and thus it will have two values.

    c1,c2=p/m,mp\Rightarrow c_1, c_2 = p/m, \sqrt{m}p

    c2/c1=m\Rightarrow c_2/c_1 = m

  15. Let a,b,ca, b, c be the sides of the triangle.

    s=(a+b+c)/2\Rightarrow s = (a + b + c)/2 and sa,sb,scs - a, s- b, s - c will be all greater than zero.

    For positive quantities A.M. >> G.M.

    s+sa+sb+sc4>[s(sa)(sb)(sc)]1/4\therefore \frac{s + s - a + s - b + s - c}{4} > [s(s - a)(s - b)(s - c)]^{1/4}

    2s4>Δ1/2\Rightarrow \frac{2s}{4}>\Delta^{1/2}

    Δ<s24\Rightarrow \Delta < \frac{s^2}{4}

  16. A+B+C=πA + B + C = \pi

    B+C=ππ4C=3π4BB + C = \pi - \frac{\pi}{4} \Rightarrow C = \frac{3\pi}{4} - B

    Let p=tanAtanBtanC=tanBtan(3π/4B)p = \tan A\tan B\tan C = \tan B\tan\left(3\pi/4 - B\right)

    p=tantan3π/4tanB1+tan3π/4tanBp = \tan\frac{\tan3\pi/4 - \tan B}{1 + \tan3\pi/4\tan B}

    =tanB(1tanB1tanB)= \tan B\left(\frac{-1 - \tan B}{1 - \tan B}\right)

    pptanB=tanBtan2Bp - p\tan B = -\tan B - \tan^2B

    tan2B+(1p)tanB+p=0\tan^2B + (1 - p)\tan B + p = 0

    For tanB\tan B to be real, D0D\geq 0

    (1p)24p0\Rightarrow (1 - p)^2 - 4p \geq 0

    p=3±22p = 3\pm 2\sqrt{2}

    Clearly, both BB and CC both cannot be obtuse.

    If either of BB or CC is obtuse angle, then

    tanBtanC<0\tan B\tan C < 0 p<0\Rightarrow p < 0

    If both are acute then

    π/4<B<π/2,π/4<C<π/2\pi/4 < B < \pi/2, \pi/4 < C < \pi/2

    tanB>1,tanC>1\Rightarrow \tan B>1, \tan C> 1

    tanBtanC>1p>1\Rightarrow \tan B\tan C > 1 \Rightarrow p > 1

    p<0,p3+22\Rightarrow p < 0, p\geq 3 + 2\sqrt{2}

  17. Let ABCABC be a triangle and AD,BE,CFAD, BE, CF be lines drawn from vertices to opposite sides such that ADC=BES=CFB=α\angle ADC = \angle BES = \angle CFB = \alpha

    Let the triangle formed by AD,BE,CFAD, BE, CF be ABCA'B'C'

    Clearly, BAC=FAB=π(BFA+FBA)=π[α+π(α+A)]=A\angle B'A'C' = \angle FA'B = \pi - (\angle BFA' + \angle FBA') = \pi - [\alpha + \pi - (\alpha + A)] = A

    Similarly, ABC=B\angle A'B'C'= B and ACB=CA'C'B' = C

    Thus, ABC ABC\triangle ABC ~ \triangle A'B'C'

    Area of ABCArea of ABC=BC2a2\frac{\text{Area of }\triangle A'B'C'}{\text{Area of }\triangle ABC} = \frac{B'C'^2}{a^2}

    Applying sine rule in ACB,AC'B,

    ACsin[π(A+α)]=ABsin(πC)\frac{AC'}{\sin[\pi - (A + \alpha)]} = \frac{AB}{\sin(\pi - C)}

    AC=2Rsin(A+α)\Rightarrow AC' = 2R\sin(A + \alpha)

    Similarly, BC=2Rsin(αA)BC' = 2R\sin(\alpha - A)

    BC=ACAB=2acosα\Rightarrow B'C' = AC' - AB' = 2a\cos\alpha

    Thus, ratio of areas =4cos2α:1= 4\cos^2\alpha:1

  18. Given, a,b,ca,b,c and Δ\Delta are rational.

    s=(a+b+c)/2s = (a + b + c)/2 will be rational.

    tanB2=Δs(sa)\tan\frac{B}{2} = \frac{\Delta}{s(s - a)} will be rational as all terms involved are rational.

    Similarly, tanC2\tan\frac{C}{2} will be rational.

    sinB=2tanB21+tan2B2\sin B = \frac{2\tan\frac{B}{2}}{1 + \tan^2\frac{B}{2}} will be rational as tanB2\tan\frac{B}{2} is rational.

    Likewise sinC\sin C will be rational.

    A2=90(C/2+B/2)\frac{A}{2} = 90^\circ - (C/2 + B/2)

    tanA2=cot(B2+C2)\tan\frac{A}{2} = \cot\left(\frac{B}{2} + \frac{C}{2}\right)

    =1tanB2tanC2tanB2+tanC2= \frac{1 - \tan\frac{B}{2}\tan\frac{C}{2}}{\tan\frac{B}{2} + \tan\frac{C}{2}} will be rational as all the terms involved are rational.

    Thus, sinA\sin A will also be rational.

    asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R are rational as all the terms involved are rational.

    R=abc4ΔΔ=abc4RR = \frac{abc}{4\Delta} \Rightarrow \Delta = \frac{abc}{4R} will be rational as well.

  19. Applying sine rule, bsinB=csinC\frac{b}{\sin B} = \frac{c}{\sin C}

    6sin30=4sinC\Rightarrow \frac{\sqrt{6}}{\sin 30^\circ} = \frac{4}{\sin C}

    sinC=26<1\sin C = \frac{2}{\sqrt{6}} < 1

    So CC may be acute or obtuse.

    We observed that b<cB<C,b < c \Rightarrow B < C, so BB may be acute or obtuse.

    If CC is obtuse BB may be acute. Hence two triangles are possible.

    Applying cosine rule, cosB=c2+a2b22ac=16+a262.4.a\cos B = \frac{c^2 + a^2 - b^2}{2ac} = \frac{16 + a^2 - 6}{2.4.a}

    32=10+a28aa243a+10=0\frac{\sqrt{3}}{2} = \frac{10 + a^2}{8a} \Rightarrow a^2 - 4\sqrt{3}a + 10 = 0

    a=23±2a = 2\sqrt{3}\pm 2

    Δ1,Δ2=12a.c.sin30=23±2\therefore \Delta_1, \Delta_2 = \frac{1}{2}a.c.\sin30^\circ = 2\sqrt{3}\pm\sqrt{2}

  20. Let ABC\triangle ABC be the equilateral triangle such that its sides have length a.a.

    s=3a2,Δ=32as = \frac{3a}{2}, \Delta = \frac{\sqrt{3}}{2}a

    r=Δs=a23r = \frac{\Delta}{s} = \frac{a}{2\sqrt{3}}

    Diameter of incircle will be diagonal of inscribed square i.e. 2r=a32r = \frac{a}{\sqrt{3}}

    Thus, side of square =a6= \frac{a}{\sqrt{6}}

    \therefore Area of square =a26= \frac{a^2}{6}

  21. Given, AD=abcb2c2AD = \frac{abc}{b^2 - c^2}

    Also, AD=bsin23abcb2c2=bsin23AD = b\sin 23^\circ \Rightarrow \frac{abc}{b^2 - c^2} = b\sin23^\circ

    acb2c2=sin23\Rightarrow \frac{ac}{b^2 - c^2} = \sin23^\circ

    sinAsinCsin2Bsin2C=sin23\Rightarrow \frac{\sin A\sin C}{\sin^2B - \sin^2C} = \sin23^\circ

    sinCsin23sin(B+C)sin(BC)=sin23\Rightarrow \frac{\sin C\sin 23^\circ}{\sin(B + C)\sin(B - C)} = \sin23^\circ

    sin(B23)=1=sin90\Rightarrow \sin(B - 23^\circ) = 1 = \sin90^\circ

    B=113\Rightarrow B = 113^\circ

  22. Given a:b:c=4:5:6a=4k,b=5k,c=6ka:b:c = 4:5:6 \Rightarrow a = 4k, b = 5k, c = 6k (let)

    Rr=abc4Δ.sΔ=abc.a+b+c24.s(sa)(sb)(sc)\frac{R}{r} = \frac{abc}{4\Delta}.\frac{s}{\Delta} = \frac{abc.\frac{a + b + c}{2}}{4.s(s - a)(s - b)(s - c)}

    =167= \frac{16}{7}

  23. Let BAD=α,CAD=β\angle BAD = \alpha, \angle CAD = \beta

    Applying sine law in ADB,BDsinα=ADsinB\triangle ADB, \frac{BD}{\sin\alpha} = \frac{AD}{\sin B}

    AD=BDsinα.32\Rightarrow AD = \frac{BD}{\sin\alpha}.\frac{\sqrt{3}}{2}

    Applying sine law in ADC,CDsinβ=ADsinC\triangle ADC, \frac{CD}{\sin\beta} = \frac{AD}{\sin C}

    AD=CDsinβ.12\Rightarrow AD = \frac{CD}{\sin\beta}.\frac{1}{\sqrt{2}}

    BDCD.32=sinαsinβ\Rightarrow \frac{BD}{CD}.\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sin\alpha}{\sin\beta}

    sinαsinβ=16\Rightarrow \frac{\sin\alpha}{\sin\beta} = \frac{1}{\sqrt{6}}

  24. Given, 3sinx4sin2xk=03\sin x - 4\sin^2x - k = 0

    sin3x=k\sin3x = k

    Since AA and BB satisfy the equations sin3A=sin3B=k\therefore \sin3A = \sin3B = k

    sin3Asin3B=0\sin3A - \sin3B = 0

    2sin3C2sin3(AB)2=0\therefore -2\sin\frac{3C}{2}\sin\frac{3(A - B)}{2} = 0

    Since ABA\neq B and also both AA and BB are less that π/3[0<k<1]\pi/3[\because 0<k<1]

    sin3C2=0C=2π3\Rightarrow \sin\frac{3C}{2} = 0 \Rightarrow C = \frac{2\pi}{3}

  25. Since A,B,CA,B,C are in A.P. 2B=A+C\therefore 2B = A + C

    A+B+C=πB=π/3A + B + C = \pi \Rightarrow B = \pi/3

    sin(2A+B)=12=sinπ6\sin(2A + B) = \frac{1}{2} = \sin\frac{\pi}{6}

    2A+B=nπ+(1)nπ6\Rightarrow 2A + B = n\pi + (-1)^n\frac{\pi}{6}

    A=π4,11π12A = \frac{\pi}{4},\frac{11\pi}{12} these are the values between 00 and π.\pi.

    But 11π12\frac{11\pi}{12} is not possible as B=π/3B = \pi/3

    A=π/4\therefore A = \pi/4

  26. Let ABCABC be the triangle having right angle at BB. From question, AC=22BDAC = 2\sqrt{2}BD

    Let BD=xAC=22xBD = x \therefore AC = 2\sqrt{2}x and C=θ\angle C = \theta

    tanC=BDCD=xCDCD=xcotθ\tan C = \frac{BD}{CD} = \frac{x}{CD}\Rightarrow CD = x\cot\theta

    tan(90C)=BDADAD=xtanθ\tan(90^\circ - C) = \frac{BD}{AD} \therefore AD = x\tan\theta

    AD+CD=ACtanθ+cotθ=22AD + CD = AC \Rightarrow \tan\theta + \cot\theta = 2\sqrt{2}

    2sinθcosθ=12\Rightarrow 2\sin\theta\cos\theta = \frac{1}{\sqrt{2}}

    sin2θ=sinπ4\Rightarrow \sin2\theta = \sin\frac{\pi}{4}

    θ=π8,3π8\Rightarrow \theta = \frac{\pi}{8}, \frac{3\pi}{8}

    A=3π8,π8\Rightarrow A = \frac{3\pi}{8}, \frac{\pi}{8}

  27. P+Q+R=πP + Q + R = \pi

    P+Q=π/2[R=π/2]\therefore P + Q = \pi/2 [\because R = \pi/2]

    tan(P+Q2)=1\Rightarrow \tan\left(\frac{P + Q}{2}\right) = 1

    tanP2+tanQ2=1tanP2tanQ2\Rightarrow \tan\frac{P}{2} + \tan\frac{Q}{2} = 1 - \tan\frac{P}{2}\tan\frac{Q}{2}

    Since tanP2\tan\frac{P}{2} and tanQ2\tan\frac{Q}{2} are roots of the equation ax2+bx+c=0ax^2 + bx + c = 0

    tanP2+tanQ2=ba,tanP2tanQ2=c2\Rightarrow \tan\frac{P}{2} + \tan\frac{Q}{2} = -\frac{b}{a}, \tan\frac{P}{2}\tan\frac{Q}{2} = \frac{c}{2}

    ba=1ca\Rightarrow -\frac{b}{a} = 1 - \frac{c}{a}

    a+b=c\Rightarrow a + b = c

  28. Let ADAD be the median such that BAD=30,DAC=45\angle BAD = 30^\circ, \angle DAC = 45^\circ and ADC=θ\angle ADC = \theta

    Applying mnmn theorem, we get

    2cotθ=cot30cot452\cot\theta = \cot30^\circ - \cot45^\circ

    tanθ=3+1\Rightarrow \tan\theta = \sqrt{3} + 1

    sinC=3+225+23\sin C = \frac{\sqrt{3} + 2}{\sqrt{2}\sqrt{5 + 2\sqrt{3}}}

    Applying sine law in ADC,\triangle ADC, we get

    ADsinC=DCsin45\frac{AD}{\sin C} = \frac{DC}{\sin45^\circ}

    DC=1\Rightarrow DC = 1

    DC=BD=1BC=2\Rightarrow DC = BD = 1 \Rightarrow BC = 2

  29. We know that in a triangle tanA+tanB+tanC=tanA+tanB+tanC\tan A + \tan B + \tan C = \tan A + \tan B + \tan C

    Also, since A.M \geq G.M.

    tanA+tanB+tanC3tanAtanBtanC3\Rightarrow \frac{\tan A + \tan B + \tan C}{3}\geq \sqrt[3]{\tan A\tan B\tan C}

    tanAtanBtanC3tanAtanBtanC3\Rightarrow \tan A\tan B\tan C\geq 3\sqrt[3]{\tan A\tan B\tan C}

    tan2Atan2Btan2C27\Rightarrow \tan^2A\tan^2B\tan^2C\geq 27

    tanA+tanB+tanC33\Rightarrow \tan A + \tan B + \tan C\geq 3\sqrt{3}

  30. Given, cosA2=12bc+cb\cos\frac{A}{2} = \frac{1}{2}\sqrt{\frac{b}{c} + \frac{c}{b}}

    s(sa)bc=12bc+cb\sqrt{\frac{s(s - a)}{bc}} = \frac{1}{2}\sqrt{\frac{b}{c} + \frac{c}{b}}

    (a+b+c)(b+ca)4bc=b2+c24bc\frac{(a + b + c)(b + c - a)}{4bc} = \frac{b^2 + c^2}{4bc}

    a2=2bc\Rightarrow a^2 = 2bc

    Thus, square described on side aa is twice the rectangle contained by two other sides.

  31. Given, cosθ=abcsinθ=1cc2(ab)2\cos\theta = \frac{a - b}{c} \Rightarrow \sin\theta = \frac{1}{c}\sqrt{c^2 - (a - b)^2}

    (a+b)sinθ2ab=(a+b)c2(ab)22cab\frac{(a + b)\sin\theta}{2\sqrt{ab}} = \frac{(a + b)\sqrt{c^2 - (a - b)^2}}{2c\sqrt{ab}}

    (a+b)2ab(1cosC)2cab=a+b2c.2sinC2\frac{(a + b)\sqrt{2ab(1 - \cos C)}}{2c\sqrt{ab}} = \frac{a + b}{\sqrt{2}c}.\sqrt{2}\sin\frac{C}{2}

    =sinA+sinBsinC.sinC2= \frac{\sin A + \sin B}{\sin C}.\sin\frac{C}{2}

    =cosAB2= \cos\frac{A - B}{2}

    csinθ2ab=cc2(ab)22ab\frac{c\sin\theta}{2\sqrt{ab}} = \frac{c\sqrt{c^2 - (a - b)^2}}{2\sqrt{ab}}

    =c2ab(1cosC)2ab=sinC2=cosA+B2= \frac{c\sqrt{2ab(1 - \cos C)}}{2\sqrt{ab}} = \sin \frac{C}{2} = \cos \frac{A + B}{2}

  32. We have proven earlier that distance between circumcenter and incenter is R22rR\sqrt{R^2 - 2rR}

    Clearly, R22rR0\sqrt{R^2 - 2rR}\geq 0

    R2r\Rightarrow R\geq 2r

  33. Given, tanB=cosA\tan B = \cos A

    1cos2BcosB=cosA\Rightarrow \frac{\sqrt{1 - \cos^2B}}{\cos B} = \cos A

    cos2B=12sin2A\Rightarrow \cos^2B = \frac{1}{2 - \sin^2A}

    Also given that cosC=tanA\cos C = \tan A

    tan2C=12sin2Asin2A\Rightarrow \tan^2 C = \frac{1 - 2\sin^2A}{\sin^2A}

    Now given that cosB=tanC\cos B = \tan C

    12sin2A=12sin2Asin2A\Rightarrow \frac{1}{2 - \sin^2A} = \frac{1 - 2\sin^2A}{\sin^2A}

    sinA=±3±52\Rightarrow \sin A = \pm\sqrt{\frac{3\pm\sqrt{5}}{2}}

    Same value will be obtained for sinB\sin B and sinC\sin C and that is equal to 2sin182\sin 18^\circ

  34. A+B+C=180A + B + C = 180^\circ

    cos(A+B)=cotC\Rightarrow \cos(A + B) = -\cot C

    cotAcotB+cotBcotC+cotCcotA=1\Rightarrow \cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    Now cot2A+cot2B+cot2C1=cot2A+cot2B+cot2C(cotAcotB+cotBcotC+cotCcotA)\cot^2A + \cot^2B + \cot^2C - 1 = \cot^2A + \cot^2B + \cot^2C - (\cot A\cot B + \cot B\cot C + \cot C\cot A)

    =12[(cotAcotB)2+(cotBcotC)2+(cotCcotA)2]0= \frac{1}{2}[(\cot A - \cot B)^2 + (\cot B - \cot C)^2 + (\cot C - \cot A)^2] \geq 0

    cot2A+cot2B+cot2C1\Rightarrow \cot^2A + \cot^2B + \cot^2C \geq 1

  35. We have proven in 229 that tanA+tanB+tanC33\tan A + \tan B + \tan C \geq 3\sqrt{3}

    We apply A.M. \geq G.M. again on tan2A,tan2B,tan2C\tan^2A, \tan^2B, \tan^2C

    tan2A+tan2B+tan2C3(tan2AtanBtan2C)1/3\frac{\tan^2A + \tan^2B + \tan^2C}{3}\geq (\tan^2A\tan^B\tan^2C)^{1/3}

    tan2A+tan2B+tanC9\Rightarrow \tan^2A + \tan^2B + \tan^C \geq 9

  36. We know that in a ABC,sinA2+sinB2+sinC232\triangle ABC, \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} \leq \frac{3}{2}

    Now we know that A.M. \geq H.M.

    cosecA2+cosecB2+cosecC233sinA2+sinB2+sinC2\frac{\cosec\frac{A}{2} + \cosec\frac{B}{2} + \cosec\frac{C}{2}}{3}\geq \frac{3}{\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}}

    cosecA2+cosecB2+cosecC26\Rightarrow \cosec\frac{A}{2} + \cosec\frac{B}{2} + \cosec\frac{C}{2} \geq 6

  37. cosA+cosB+cosC32=2cosA+B2cosAB2+12sin2C232\cos A + \cos B + \cos C -\frac{3}{2} = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} + 1 - 2\sin^2\frac{C}{2} - \frac{3}{2}

    2sin2C2+2cosAB2sinC212=0\Rightarrow -2\sin^2\frac{C}{2} + 2\cos\frac{A - B}{2}\sin\frac{C}{2} - \frac{1}{2} = 0

    Clearly D=4cos2AB24<0D = 4\cos^2\frac{A - B}{2} - 4 < 0 so sign of quadratic equation will be same as that of first term.

    cosA+cosB+cosC32\Rightarrow \cos A + \cos B + \cos C \leq \frac{3}{2}

    Now cosA+cosB+cosC1=2sinC2cosAB22sinC2\cos A + \cos B + \cos C - 1 = 2\sin\frac{C}{2}\cos\frac{A - B}{2} - 2\sin^\frac{C}{2}

    =2sinC2[cosAB2cosA+B2]= 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \cos\frac{A + B}{2}\right]

    =4sinA2sinB2sinC2>0= 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2} > 0

    cosA+cosB+cosC>1\therefore \cos A + \cos B + \cos C > 1

  38. y=2cosAcosBcosC=[cos(AB)+cos(A+B)]cosC=[cos(AB)cosC]cosCy=2\cos A\cos B\cos C=[\cos(A-B)+\cos(A+B)]\cos C=[\cos(A-B)-\cos C]\cos C

        cos2Ccos(AB)cosC+y=0\implies\cos^2C-\cos(A-B)\cos C+y=0

    which is quadratic equation in cosC\cos C which would be real.

    D0    cos2(AB)4y0    ycos2(AB)414\Rightarrow D \geq 0 \implies \cos^2(A-B)-4y\ge0\iff y\le\dfrac{\cos^2(A-B)}4\le\dfrac14

    Hence proved.

  39. Let AA be the center of first circle having radius aa and BB be the center of second circle having radius b.b.

    Let the two circles intersect at CC and DD so ACB=ADB=θ\angle ACB = \angle ADB = \theta

    We know that perpendicular from the center of a circle divides the chord in two equal parts. So ABAB will divide CDCD in two equal parts.

    Let CD=2x.CD = 2x. Let ABAB cut CDCD at OO then OC=OD=xOC = OD = x

    AB=OA+OB=a2x2+b2x2AB = OA + OB = \sqrt{a^2 - x^2} + \sqrt{b^2 - x^2}

    Clearly, ACB=θ\angle ACB = \theta

    Applying cosine law in ABC\triangle ABC

    AB2=AC2+BC22.AC.BCcos(πθ)AB^2 = AC^2 + BC^2 - 2.AC.BC\cos(\pi - \theta)

    a2x2+b2x2+2a2x2b2x2=a2+b2+2abcosθ\Rightarrow a^2 - x^2 + b^2 - x^2 + 2\sqrt{a^2 - x^2}\sqrt{b^2 - x^2} = a^2 + b^2 + 2ab\cos\theta

    CD=2x=2absinθa2+b2+2abcosθ\Rightarrow CD = 2x = \frac{2ab\sin\theta}{\sqrt{a^2 + b^2 + 2ab\cos\theta}}

  40. The diagram is given below:

    Problem 240

    Let the triangle be ABCABC which will be equilateral triangle having radius 22 if all the circles are unit circle(i.e. having radius 11 ).

    There will be two circles which will touch all three circles. One is the smaller one which will be inside the area enclosed by three circles and the other will be one which will enclose all the circles.

    Clearly, the center of the two circles will bisect the angles of the triangle.

    cos30=1x+1\therefore \cos30^\circ = \frac{1}{x + 1} where xx is the radius of inner circle.

        x=233\implies x = \frac{2 - \sqrt{3}}{\sqrt{3}}

    Radius of outer circle =2+x=2+33= 2 + x = \frac{2 + \sqrt{3}}{\sqrt{3}}

  41. We have to prove that r=0nnCrarbnrcos[rB(nr)A]=Cn\sum_{r=0}^n{}^nC_ra^rb^{n - r}\cos[rB - (n - r)A] = C^n

    From De Movire’s theorem(this we have not studied yet),

    L.H.S. =r=0n(aeiB)r(b.eiA)r= \sum_{r = 0}^n(ae^{iB})^r(b.e^{-iA})^r

    =(aeiB+beiA)n=(acosB+iasinB+bcosAibsinA)= (ae^iB + be^{-iA})^n = (a\cos B + ia\sin B + b\cos A - ib\sin A)

    [asinA=bsinB]\left[\because \frac{a}{\sin A} = \frac{b}{\sin B}\right]

    =(acosB+bcosA)n=cn= (a\cos B + b\cos A)^n = c^n

  42. Let A=B    A+B+C=π    2A+C=πA = B \implies A + B + C = \pi \implies 2A + C = \pi

    Given, tanA+tanB+tanC=k\tan A +\tan B + \tan C = k

        2tanA+tan(π2A)=k\implies 2\tan A + \tan(\pi - 2A) = k

        2tanA(1+11tan2A)=k\implies 2\tan A\left(1 + \frac{1}{1 - \tan^2A}\right) = k

        2tanAtan2A1tan2A=k\implies 2\tan A\frac{\tan^2A}{1 - \tan^2A} = k

        2tan3A1tan2A=k\implies \frac{2\tan^3A}{1 - \tan^2A} = k

    Now, since it is an isoscles triangle A<π/2A < \pi/2

    So there are three possibilities, 0<A<π/4,A=π/4,π/4<A<π/20 < A < \pi/4, A=\pi/4, \pi/4 < A < \pi/2

    In first case k<0,k < 0, in second case k=k=\infty and in third case k>0k > 0

    Whenever k<0k<0 or k>0k>0 multiple isosceles triangles are possible. For example, for k<0k < 0 i.e. for 0<A<π/4,A0 < A < \pi/4, A can assume values like π/6,π/5,π/7\pi/6, \pi/5, \pi/7 and so on.

    Similarly, for k>0,Ak > 0, A can assume multiple values.

    However, if k=k = \infty then A,BA, B can have only one value i.e. π/4\pi/4 and only one isoceles triangle is possible.

  43. We have to prove that Δs233\Delta \leq \frac{s^2}{3\sqrt{3}}

    i.e. s(sa)(sb)(sc)s427s(s - a)(s - b)(s - c) \leq \frac{s^4}{27}

        (sa)(sb)(sc)s327\implies \frac{(s - a)(s - b)(s - c)}{s^3}\leq 27

    We know that A.M. \geq G.M.

        sa+sb+sc3s(sa)(sb)(sc)s33\implies \frac{s - a + s - b + s - c}{3s}\geq \sqrt[3]{\frac{(s - a)(s - b)(s - c)}{s^3}}

        13(sa)(sb)(sc)s33\implies \frac{1}{3}\geq \sqrt[3]{\frac{(s - a)(s - b)(s - c)}{s^3}}

    Cubing we get,

    (sa)(sb)(sc)s327\frac{(s - a)(s - b)(s - c)}{s^3}\leq 27

    Hence proved.

  44. Let a=3x+4y,b=4x+3ya=3x+4y,b=4x+3y and c=5x+5yc=5x+5y be the largest side.

    cosC=a2+b2c22ab=2xy2(3x+4y)(4x+3y)<0 x,y>0\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{-2xy}{2(3x + 4y)(4x + 3y)} < 0~\forall x, y >0

    Thus, it is an obstuse angled triangle.

  45. Δ=12ah1=12bh2=12ch3\Delta = \frac{1}{2}ah_1 = \frac{1}{2}bh_2 = \frac{1}{2}ch_3

        h1=2Δa,h2=2Δb,h3=2Δh3\implies h_1 = \frac{2\Delta}{a}, h_2 = \frac{2\Delta}{b}, h_3 = \frac{2\Delta}{h_3}

    We know that r=Δsr = \frac{\Delta}{s}

    Now it is trivial to show the required condition.

  46. Δ0\Delta_0 can be evaluated to be 12rSR\frac{1}{2}\frac{rS}{R}

    Likewise Δ1=12r1SR\Delta_1 = \frac{1}{2}\frac{r_1S}{R} and so on.

    Now it is trivial to prove the required equality.