24. Trigonometrical Equations and their General Solutions Answers#

  1. Given equation is sinθ=1\sin\theta = -1

    sinθ=sin(π2)\Rightarrow \sin\theta = \sin\left(-\frac{\pi}{2}\right)

    θ=nπ+(1)n(π2)\Rightarrow \theta = n\pi + (-1)^n\left(-\frac{\pi}{2}\right)

    θ=nπ+(1)n+1π2\theta = n\pi + (-1)^{n +1}\frac{\pi}{2} where nI.n\in I.

  2. Given equation is cosθ=12\cos\theta = -\frac{1}{2}

    cosθ=cos2π3θ=2nπ±2π3\cos\theta = \cos\frac{2\pi}{3} \Rightarrow \theta = 2n\pi \pm \frac{2\pi}{3} where nI.n\in I.

  3. Given equation is tanθ=3\tan\theta = -\sqrt{3}

    tanθ=tan(π3)θ=nπ+(π3)\Rightarrow \tan\theta = \tan\left(-\frac{\pi}{3}\right) \Rightarrow \theta = n\pi + \left(-\frac{\pi}{3}\right)

    =nππ3= n\pi - \frac{\pi}{3} where nI.n\in I.

  4. Given equation is secθ=2\sec\theta = -\sqrt{2}

    secθ=sec3π4θ=2nπ±3π4\Rightarrow \sec\theta = \sec\frac{3\pi}{4}\Rightarrow \theta = 2n\pi\pm \frac{3\pi}{4} where xIx\in I

  5. Given equation is sin8θ=sinθsin9θsinθ=0\sin8\theta = \sin\theta \Rightarrow \sin9\theta - \sin\theta = 0

    2cos5θ.sin4θ=0\Rightarrow 2\cos5\theta.\sin4\theta = 0

    Either cos5θ=0\cos5\theta = 0 or sin4θ=0\sin4\theta = 0

    5θ=(2n+1)π2\Rightarrow 5\theta = (2n + 1)\frac{\pi}{2} or 4θ=nπ4\theta = n\pi

    θ=nπ4,(2n+1)π10\theta = \frac{n\pi}{4}, (2n + 1)\frac{\pi}{10} where nI.n\in I.

  6. Given equation is sin5x=cos2x\sin5x = \cos2x

    cos2x=cos(π25x)\Rightarrow \cos2x = \cos\left(\frac{\pi}{2} - 5x\right)

    2x=2nπ±(π25x)2x = 2n\pi \pm \left(\frac{\pi}{2} - 5x\right)

    x=(4n+1)π14,(4n1)π6x = (4n + 1)\frac{\pi}{14}, -(4n - 1)\frac{\pi}{6} where nIn\in I

  7. Given equation is sin3x=sinxsin3xsinx=0\sin3x = \sin x \Rightarrow \sin3x - \sin x= 0

    cos2x.sinx=0\Rightarrow \cos2x.\sin x = 0

    Either cos2x=0\cos2x = 0 or sinx=0\sin x= 0

    2x=(2n+1)π2\Rightarrow 2x = (2n + 1)\frac{\pi}{2} or x=nπx = n\pi

    x=nπ,(2n+1)π4x = n\pi, (2n + 1)\frac{\pi}{4} where nIn\in I

  8. Given equation is sin3x=cos2xcos2x=cos(π23x)\sin3x = \cos2x \Rightarrow \cos2x = \cos\left(\frac{\pi}{2} - 3x\right)

    2x=2nπ±(π23x)\Rightarrow 2x = 2n\pi \pm \left(\frac{\pi}{2} - 3x\right)

    x=2nπ5+π10,2nπ+π2x = \frac{2n\pi}{5} + \frac{\pi}{10}, -2n\pi + \frac{\pi}{2}

  9. Given equation is sinax+cosbx=0\sin ax + \cos bx = 0

    sinax+sin(π2bx)=0\Rightarrow \sin ax + \sin\left(\frac{\pi}{2} - bx\right) = 0

    2sin(π4+(ab)x2)cos((a+b)x2π4)=0\Rightarrow 2\sin\left(\frac{\pi}{4} + \frac{(a - b)x}{2}\right)\cos\left(\frac{(a + b)x}{2} - \frac{\pi}{4}\right) = 0

    Either sin(π4+(ab)x2)=0\Rightarrow \sin\left(\frac{\pi}{4} + \frac{(a - b)x}{2}\right) = 0 or cos((a+b)x2π4)=0\cos\left(\frac{(a + b)x}{2} - \frac{\pi}{4}\right) = 0

    π4+(ab)x2=nπ\Rightarrow \frac{\pi}{4} + \frac{(a - b)x}{2} = n\pi or (a+b)x2π4=(2n+1)π2\frac{(a + b)x}{2} - \frac{\pi}{4} = (2n + 1)\frac{\pi}{2}

    x=2nππ2ab,(2n+1)π+π2a+bx = \frac{2n\pi - \frac{\pi}{2}}{a - b}, \frac{(2n + 1)\pi + \frac{\pi}{2}}{a + b}

  10. Given tanxtan4x=1sinxsin4x=cosxcos4x\tan x\tan 4x =1 \Rightarrow \sin x\sin4x = \cos x\cos4x

    cosxcos4xsinxsin4x=0\Rightarrow \cos x\cos4x - \sin x\sin 4x = 0

    cos5x=05x=(2n+1)π2x=(2n+1)π10\cos 5x = 0 \Rightarrow 5x = (2n + 1)\frac{\pi}{2} \Rightarrow x = \frac{(2n + 1)\pi}{10}

  11. Given equation is cosθ=sin105+cos105\cos\theta = \sin105^\circ + \cos 105^\circ

    sin105=sin(60+45)=3+122\sin105^\circ = \sin(60^\circ + 45^\circ) = \frac{\sqrt{3} + 1}{2\sqrt{2}}

    cos105=cos(60+45)=1322\cos105^\circ = \cos(60^\circ + 45^\circ) = \frac{1 - \sqrt{3}}{2\sqrt{2}}

    cosθ=12θ=2nπ±π4\Rightarrow \cos\theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4}

  12. Given equation is 7cos2θ+3sin2θ=47\cos^2\theta + 3\sin^2\theta = 4

    4cos2θ+3=4cosθ=±12\Rightarrow 4\cos^2\theta + 3 = 4 \Rightarrow \cos\theta = \pm \frac{1}{2}

    If cosθ=12θ=2nπ±π3\cos\theta = \frac{1}{2}\Rightarrow \theta = 2n\pi\pm\frac{\pi}{3}

    If cosθ=12θ=2nπ±2π3\cos\theta = -\frac{1}{2}\Rightarrow \theta = 2n\pi\pm\frac{2\pi}{3}

  13. Given equation is 3tan(θ15)=tan(θ+15)3\tan(\theta - 15^\circ) = \tan(\theta + 15^\circ)

    tan(θ+15)tan(θ15)=31\Rightarrow \frac{\tan(\theta + 15^\circ)}{\tan(\theta - 15^\circ)} = \frac{3}{1}

    Applying componendo and dividendo

    tan(θ+15)+tan(θ15)tan(θ+15)tan(θ15)=42\Rightarrow \frac{\tan(\theta + 15^\circ) + \tan(\theta - 15^\circ)}{\tan(\theta + 15^\circ) - \tan(\theta - 15^\circ)} = \frac{4}{2}

    sin(θ+15+θ15)sin(θ+15θ+15)=2\Rightarrow \frac{\sin(\theta + 15^\circ + \theta - 15^\circ)}{\sin(\theta + 15^\circ - \theta + 15^\circ)} = 2

    sin2θ=22θ=nπ+(1)nπ2θ=nπ2+(1)nπ4\Rightarrow \sin2\theta = 2 \Rightarrow 2\theta = n\pi + (-1)^n\frac{\pi}{2} \Rightarrow \theta = \frac{n\pi}{2} + (-1)^n\frac{\pi}{4}

  14. Given equation is tanx+cotx=2tan2x2tanx+1=0\tan x + \cot x = 2 \Rightarrow \tan^2x - 2\tan x + 1 = 0

    (tanx1)2=0tanx=1x=nπ+π4\Rightarrow (\tan x - 1)^2 = 0 \Rightarrow \tan x = 1 \Rightarrow x = n\pi + \frac{\pi}{4}

  15. Given equation is sin2θ=sin2αsinθ=±sinα\sin^2\theta = \sin^2\alpha \Rightarrow \sin\theta = \pm \sin\alpha

    θ=nπ±α\theta = n\pi \pm\alpha

  16. Given equation is tan2x+cot2x=2\tan^2x + \cot^2x = 2

    tan4x2tan2x+1=0(tan2x1)2=0\Rightarrow \tan^4x - 2\tan^2x + 1 = 0 \Rightarrow (\tan^2x - 1)^2 = 0

    tanx=±x=nπ±π4\tan x = \pm \Rightarrow x = n\pi \pm \frac{\pi}{4}

  17. Given equation is tan2x=3cosec2x1\tan^2x = 3\cosec^2x - 1

    tan2x=2+3cot2xtan4x2tan2x3=0\Rightarrow \tan^2x = 2 + 3\cot^2x \Rightarrow \tan^4x -2\tan^2x - 3 = 0

    (tan2x+1)(tan2x3)=0\Rightarrow (\tan^2x + 1)(\tan^2x - 3) = 0

    If tan2x+1=0\tan^2x + 1 = 0 then xx will become imaginary.

    tanx=±3x=nπ±π3\therefore \tan x = \pm\sqrt{3} \Rightarrow x = n\pi \pm \frac{\pi}{3}

  18. Given equation is 2sin2x+sin22x=22\sin^2x + \sin^22x = 2

    2sin2x+4sin2xcos2x=2sin2x+2sin2x(1sin2x)=1\Rightarrow 2\sin^2x + 4\sin^2x\cos^2x = 2 \Rightarrow \sin^2x + 2\sin^2x(1 - \sin^2x) = 1

    (2sin2x1)(sin2x1)=0\Rightarrow (2\sin^2x - 1)(\sin^2x - 1) = 0

    sinx=±12\Rightarrow \sin x = \pm\frac{1}{\sqrt{2}} or sinx=±1\sin x = \pm 1

    x=nπ±π4,(2n+1)π2\Rightarrow x = n\pi \pm \frac{\pi}{4}, (2n + 1)\frac{\pi}{2}

  19. Given equation is 7cos2x+3sin2x=47\cos^2 x + 3\sin^2 x = 4

    4cos2x+3=4cosx=±12\Rightarrow 4\cos^2 x + 3 = 4 \Rightarrow \cos x = \pm \frac{1}{2}

    If cosx=12x=2nπ±π3\cos x = \frac{1}{2}\Rightarrow x = 2n\pi\pm\frac{\pi}{3}

    If cosx=12x=2nπ±2π3\cos x = -\frac{1}{2}\Rightarrow x = 2n\pi\pm\frac{2\pi}{3}

  20. Given equation is 2cos2x+2sinx=22\cos2x + \sqrt{2\sin x} = 2

    2sinx=2(1cos2x)=4sin2x\Rightarrow \sqrt{2\sin x} = 2(1 - \cos2x) = 4\sin^2x

    2sinx(122sin32x)=0\Rightarrow \sqrt{2\sin x}\left(1 - 2\sqrt{2}\sin^{\frac{3}{2}}x\right) = 0

    Either:math:sin x = 0 Rightarrow x = npi where nIn\in I

    or sin32x=122sinx=12\sin^{\frac{3}{2}}x = \frac{1}{2\sqrt{2}} \Rightarrow \sin x = \frac{1}{2}

    x=nπ+(1)nπ6\Rightarrow x = n\pi + (-1)^n\frac{\pi}{6}

  21. We know that tan2x2=1cosx1+cosx\tan^2\frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}

    8(1cosx1+cosx)=1+secx=1+cosxcosx\therefore 8\left(\frac{1 - \cos x}{1 + \cos x}\right) = 1 + sec x = \frac{1 + \cos x}{\cos x}

    8cosx8cos2x=(1+cosx)2\Rightarrow 8\cos x - 8\cos^2x = (1 + \cos x)^2

    9cos2x6cosx+1=0(3cosx1)2=0\Rightarrow 9\cos^2x - 6\cos x + 1 = 0 \Rightarrow (3\cos x - 1)^2 = 0

    cosx=13x=2nπ±cos113\cos x = \frac{1}{3} \Rightarrow x = 2n\pi \pm \cos^{-1}\frac{1}{3} where ninI.n in I.

    Check x2(2n+1)π2\frac{x}{2}\neq (2n + 1)\frac{\pi}{2} and cosx=0\cos x \neq = 0 else equation will be meaningless.

    x(2n+1)π\Rightarrow x\neq (2n + 1)\pi and x(2n+1)π2x\neq (2n + 1)\frac{\pi}{2}

  22. Given equation is cosxcos2xcos3x=14\cos x\cos2x\cos3x = \frac{1}{4}

    (2cosxcos3x)2cos2x=12cos4xcos2x+2cos22x1=0\Rightarrow (2\cos x\cos3x)2\cos2x = 1 \Rightarrow 2\cos4x\cos2x + 2\cos^22x - 1 = 0

    cos4x[2cos2x+1]=0\Rightarrow \cos4x[2\cos2x + 1] = 0

    If cos4x=0x=(2n+1)π8\cos4x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{8}

    If 2cos2x+1=02x=2nπ±2π32\cos2x + 1 = 0 \Rightarrow 2x = 2n\pi \pm \frac{2\pi}{3}

    x=nπ±π3x = n\pi \pm \frac{\pi}{3}

  23. Given equation is tanx+tan2x+tan3x=0\tan x + \tan2x + \tan3x = 0

    tanx+tan2x+tanx+tan2x1tanxtan2x=0\Rightarrow \tan x +\tan2x + \frac{\tan x + \tan 2x}{1 - \tan x\tan 2x} = 0

    (tanx+tan2x)(1+11tanxtan2x)=0\Rightarrow (\tan x + \tan 2x)\left(1 + \frac{1}{1 - \tan x\tan 2x}\right) = 0

    If tanx+tan2x=0tanx=tan2xx=nπ2xx=nπ3\tan x + \tan 2x = 0 \Rightarrow \tan x = -\tan 2x \Rightarrow x = n\pi -2x \Rightarrow x = \frac{n\pi}{3}

    If 1+11tanxtan2x=01 + \frac{1}{1 - \tan x\tan 2x} = 0 then tanxtan2x=2\tan x\tan 2x = 2

    tan2x1tan2x=1tanx=±12\frac{\tan^2x}{1 -\tan^2x} = 1 \Rightarrow \tan x = \pm\frac{1}{\sqrt{2}}

    x=nπ±tan112x = n\pi \pm\tan^{-1}\frac{1}{\sqrt{2}}

  24. Given equation is cotxtanxcosx+sinx=0\cot x - \tan x - \cos x + \sin x = 0

    cos2xsin2xcosxsinx(cosxsinx)=0\Rightarrow \frac{\cos^2x - \sin^2x}{\cos x\sin x} - (\cos x - \sin x) = 0

    (cosxsinx)(cosx+sinxcosxsinx1)=0\Rightarrow (\cos x - \sin x)\left(\frac{\cos x + \sin x}{\cos x\sin x} - 1\right) = 0

    If cosxsinx=0tanx=1x=nπ+π4\cos x - \sin x = 0 \Rightarrow \tan x = 1\Rightarrow x = n\pi + \frac{\pi}{4}

    If cosx+sinxcosxsinx1=0\frac{\cos x + \sin x}{\cos x\sin x} - 1= 0

    cosx+sinx=cosxsinx\Rightarrow \cos x + \sin x = \cos x\sin x

    Squaring, we get 1+sin2x=14sin2x1 + \sin2x = \frac{1}{4}\sin^2x

    sin2x=2±22\Rightarrow \sin2x = 2\pm 2\sqrt{2}

    However, 2+22>12 + 2\sqrt{2} > 1 which is not possible.

    sin2x=222=sinα\Rightarrow \sin 2x = 2 - 2\sqrt{2} = \sin\alpha (let)

    x=nπ2+(1)nα2x = \frac{n\pi}{2} + \frac{(-1)^n\alpha}{2}

  25. Given equation is 2sin2x5sinxcosx8cos2x=22\sin^2x - 5\sin x\cos x - 8\cos^2x = -2

    Clearly, cosx0\cos x \neq 0 else sin2x=1\sin^2x = -1 which is not possible.

    Therefore, we can divide both sides by cos2x\cos^2x which yields

    2tan2x5tanx8=2sec2x2\tan^2x - 5\tan x -8 = -2\sec^2x

    4tan2x5tanx6=0\Rightarrow 4\tan^2x - 5\tan x - 6 = 0

    (tanx2)(4tanx+3)=0\Rightarrow (\tan x - 2)(4\tan x + 3) = 0

    Thus, x=nπ+tan12,bπ+tan1(34)x = n\pi + \tan^{-1}2, b\pi + \tan^{-1}\left(\frac{-3}{4}\right)

  26. Given equation is (1tanx)(1+sin2x)=1+tanx(1 - \tan x)(1 + \sin2x) = 1 + \tan x

    (1tanx)(1+2tanx1+tan2x)=1+tanx\Rightarrow (1 - \tan x)\left(1 + \frac{2\tan x}{1 + \tan^2x}\right) = 1 + \tan x

    (1tanx)(1+tanx)2=(1+tanx)(1+tan2x)\Rightarrow (1 - \tan x)(1 + \tan x)^2 = (1 + \tan x)(1 + \tan^2x)

    (1+tanx)[(1tanx)(1+tanx)(1+tan2x)]=0\Rightarrow (1 + \tan x)[(1 - \tan x)(1 + \tan x) - (1 + \tan^2x)] = 0

    (1+tanx)(2tan2x)=0\Rightarrow (1 + \tan x)(-2\tan^2x) = 0

    If tan2x=0tanx=0x=nπ\tan^2x = 0 \Rightarrow \tan x = 0\Rightarrow x = n\pi

    If 1+tanx=0x=nππ41 + \tan x = 0 \Rightarrow x = n\pi - \frac{\pi}{4}

    where nIn \in I

  27. Given equation is 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx2(\cos x + \cos2x) + \sin2x(1 + 2\cos x) = 2\sin x

    4cos3x2cosx2+2sin5x2cosx22sinx2cosx2=0\Rightarrow 4\cos\frac{3x}{2}\cos\frac{x}{2} + 2\sin\frac{5x}{2}\cos\frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2} = 0

    2cosx2[2cos3x2+sin5x2sinx2]=0\Rightarrow 2\cos\frac{x}{2}\left[2\cos\frac{3x}{2} + \sin\frac{5x}{2} - \sin\frac{x}{2}\right] = 0

    2cosx2[2cos3x2+2cos3x2sinx]=0\Rightarrow 2\cos\frac{x}{2}\left[2\cos\frac{3x}{2} + 2\cos\frac{3x}{2}\sin x\right] = 0

    4cosx2cos3x2[1+sinx]=0\Rightarrow 4\cos\frac{x}{2}\cos\frac{3x}{2}[1 + \sin x] = 0

    If cosx2=0x=(2n+1)π\cos\frac{x}{2} = 0 \Rightarrow x = (2n + 1)\pi

    If cos3x2=0x=(2n+1)π3\cos\frac{3x}{2} = 0 \Rightarrow x = (2n + 1)\frac{\pi}{3}

    If 1+sinx=0x=nπ+(1)n+1π21 + \sin x = 0 \Rightarrow x = n\pi + (-1)^{n + 1}\frac{\pi}{2}

    So the values in the given range are x=π,π2,π3,π3,πx = -\pi, -\frac{\pi}{2}, -\frac{\pi}{3}, \frac{\pi}{3}, \pi

  28. Given equation is 4cos2xsinx2sin2x=3sinx4\cos^2x\sin x - 2\sin^2x = 3\sin x

    sinx[4cos2x2sinx3]=0\Rightarrow \sin x[4\cos^2x - 2\sin x - 3] = 0

    sinx[44sin2x2sinx3]=0\Rightarrow \sin x[4 - 4\sin^2x - 2\sin x - 3] = 0

    sinx[4sin2x+2sinx1]=0\Rightarrow \sin x[4\sin^2x + 2\sin x - 1] = 0

    If sinx=0x=nπ\sin x = 0 \Rightarrow x = n\pi

    If 4sin2x+2sinx1=04\sin^2x + 2\sin x - 1 = 0

    sinx=1±54\sin x = \frac{-1\pm\sqrt{5}}{4}

    If sinx=1+54sinx=sinπ10x=nπ+(1)nπ10\sin x = \frac{-1 + \sqrt{5}}{4} \Rightarrow \sin x = \sin\frac{\pi}{10} \Rightarrow x = n\pi + (-1)^n\frac{\pi}{10}

    If sinx=154sinx=sin54=sin(3π10)\sin x = \frac{-1 - \sqrt{5}}{4}\Rightarrow \sin x = -\sin54^\circ = \sin\left(\frac{-3\pi}{10}\right)

    x=nπ+(1)n+13π10\Rightarrow x = n\pi + (-1)^{n + 1}\frac{3\pi}{10}

  29. Given equation is 2+7tan2x=3.25sec2x2 + 7\tan^2x = 3.25\sec^2x

    8+28tan2x=13sec2x=13+13tan2x\Rightarrow 8 + 28\tan^2x = 13\sec^2x = 13 + 13\tan^2x

    15tan2x=5tanx=±13\Rightarrow 15\tan^2x = 5 \Rightarrow \tan x = \pm \frac{1}{\sqrt{3}}

    x=nπ±π6\Rightarrow x = n\pi \pm \frac{\pi}{6}

  30. Given equation is cos2x+cos4x=2cosx\cos 2x + \cos 4x = 2\cos x

    cos4x+cos2x2cosx=0\Rightarrow \cos4x + \cos2x - 2\cos x = 0

    2cos3xcosxcosx=0\Rightarrow 2\cos3x\cos x - \cos x = 0

    2cosx[cos3x1]=02\cos x[\cos 3x - 1] = 0

    If cosx=0x=(2n+1)π2\cos x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{2}

    If cos3x1=03x=2nπx=2nπ3\cos 3x - 1 = 0\Rightarrow 3x = 2n\pi \Rightarrow x = \frac{2n\pi}{3}

  31. Given equation is 3tanx+cotx=5cosecx3\tan x + \cot x = 5\cosec x

    3sinxcosx+cosxsinx=5sinx\Rightarrow \frac{3\sin x}{\cos x} + \frac{\cos x}{\sin x} = \frac{5}{\sin x}

    sinx(3sin2x+cos2x)=5sinxcosx\Rightarrow \sin x(3\sin^2x + \cos^2x) = 5\sin x\cos x

    sinx(2sin2x5cosx+1)=0\Rightarrow \sin x(2\sin^2x - 5\cos x + 1) = 0

    sinx(2cos2x+5cosx3)=0\Rightarrow \sin x(2\cos^2x + 5\cos x - 3) = 0

    sinx(2cosx+3)(2cosx1)=0\Rightarrow \sin x(2\cos x + 3)(2\cos x - 1) = 0

    sinx0\sin x\neq 0 because that will make cosecx\cosec x and cotx.\cot x \infty.

    2cosx+302\cos x + 3 \neq 0 because 1cosx1-1\leq \cos x\leq 1

    2cosx1=0cosx=12x=2nπ±π3\therefore 2\cos x - 1 = 0\Rightarrow \cos x = \frac{1}{2} \Rightarrow x = 2n\pi \pm \frac{\pi}{3}

  32. Given equation is 2sin2x=3cosx2\sin^2x = 3\cos x

    2cos2x+3cosx2=0\Rightarrow 2\cos^2x + 3\cos x - 2 = 0

    (2cosx1)(cosx+2)=0\Rightarrow (2\cos x - 1)(\cos x + 2) = 0

    cosx21cosx1\cos x \neq 2 \because -1\leq \cos x\leq 1

    2cosx1=0x=2nπ±π3  nI\therefore 2\cos x - 1 = 0\Rightarrow x = 2n\pi \pm \frac{\pi}{3}~\forall~n\in I

    0x2πx=π3,5π30\leq x \leq 2\pi \therefore x = \frac{\pi}{3}, \frac{5\pi}{3}

  33. Given equation is sin2xcosx=14\sin^2x - \cos x = \frac{1}{4}

    4sin2x4cosx=144cos2x4cosx=1\Rightarrow 4\sin^2x - 4\cos x = 1 \Rightarrow 4 - 4\cos^2x - 4\cos x = 1

    4cos2x+4cosx3=0\Rightarrow 4\cos^2x + 4\cos x -3 = 0

    (2cosx+3)(2cosx1)=0\Rightarrow (2\cos x + 3)(2\cos x - 1) = 0

    cosx21cosx1\cos x \neq 2 \because -1\leq \cos x\leq 1

    2cosx1=0x=2nπ±π3  nI\therefore 2\cos x - 1 = 0\Rightarrow x = 2n\pi \pm \frac{\pi}{3}~\forall~n\in I

    0x2πx=π3,5π30\leq x \leq 2\pi \therefore x = \frac{\pi}{3}, \frac{5\pi}{3}

  34. Given equation is 3tan2x2sinx=03\tan^2x - 2\sin x = 0

    3sin2x2sinxcos2x=0\Rightarrow 3\sin^2x - 2\sin x\cos^2x = 0

    3sin2x2sinx+2sin3x=0\Rightarrow 3\sin^2x - 2\sin x + 2\sin^3x = 0

    sinx(2sin2x+3sinx2)=0\Rightarrow \sin x(2\sin^2x + 3\sin x - 2) = 0

    sinx(sinx+2)(2sinx1)=0\Rightarrow \sin x(\sin x + 2)(2\sin x - 1) = 0

    sinx21sinx1\sin x\neq -2 \because -1\leq \sin x\leq 1

    If sinx=0x=nπ\sin x = 0 \Rightarrow x = n\pi

    If 2sinx1=0x=nπ+(1)nπ62\sin x - 1 = 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{6}

  35. Given equation is sinx+sin5x=sin3x\sin x + \sin5x = \sin 3x

    sin5xsin3x+sinx=0\Rightarrow \sin5x - \sin3x + \sin x = 0

    2cos4xsinx+sinx=0\Rightarrow 2\cos4x\sin x + \sin x = 0

    sinx(2cos4x+1)=0\sin x(2\cos 4x + 1) = 0

    If sinx=0x=nπ  xI\sin x = 0\Rightarrow x = n\pi~\forall~x\in I

    If 2cos4x+1=04x=2nπ±2π32\cos4x + 1 = 0 \Rightarrow 4x = 2n\pi \pm\frac{2\pi}{3}

    x=nπ2±π6  xIx = \frac{n\pi}{2}\pm \frac{\pi}{6}~\forall~x\in I

    Thus, x=0,πx = 0, \pi and x=π6,π3,2π3,5π6x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}

  36. Given equation is sin6x=sin4xsin2x\sin6x = \sin4x - \sin2x

    sin6x+sin2xsin4x=0\Rightarrow \sin6x + \sin2x - \sin4x = 0

    2sin4xcos2xsin4x=0\Rightarrow 2\sin4x\cos2x - \sin4x = 0

    sin4x(2cos2x1)=0\Rightarrow \sin4x(2\cos2x - 1) = 0

    If sin4x=0x=nπ4\sin4x = 0 \Rightarrow x = \frac{n\pi}{4}

    If 2cos2x1=0cos2x=122x=2nπ±π32\cos2x - 1 = 0 \Rightarrow \cos2x = \frac{1}{2}\Rightarrow 2x = 2n\pi \pm \frac{\pi}{3}

    x=nπ±π6\Rightarrow x = n\pi \pm \frac{\pi}{6}

  37. Given equation is cos6x+cos4x+cos2x+1=0\cos6x + \cos 4x + \cos 2x + 1 = 0

    2cos5xcosx+2cos2x=0\Rightarrow 2\cos5x\cos x + 2\cos^2x = 0

    2cosx(cos5x+cosx)=0\Rightarrow 2\cos x(\cos5x + \cos x) = 0

    4cosxcos2xcos3x=0\Rightarrow 4\cos x\cos2x\cos3x = 0

    If cosx=0x=2nπ±π2\cos x = 0 \Rightarrow x = 2n\pi \pm\frac{\pi}{2}

    If cos2x=0x=nπ±π4\cos2x = 0 \Rightarrow x = n\pi \pm \frac{\pi}{4}

    If cos3x=0x=2nπ3±π6\cos3x = 0 \Rightarrow x = \frac{2n\pi}{3}\pm\frac{\pi}{6}

  38. Given equation is cosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0

    (cosx+cos3x)+cos2x=0\Rightarrow (\cos x + \cos3x) + \cos 2x = 0

    2cos2xcosx+cos2x=0\Rightarrow 2\cos2x\cos x + \cos 2x = 0

    cos2x(2cosx+1)=0\Rightarrow \cos2x(2\cos x + 1) = 0

    If cos2x=0x=(2n+1)π4\cos 2x = 0 \Rightarrow x = (2n + 1)\frac{\pi}{4}

    If 2cosx+1=0x=2nπ±2π32\cos x + 1 = 0 \Rightarrow x = 2n\pi\pm\frac{2\pi}{3}

  39. Given equation is cos3x+cos2x=sin3x2+sinx2\cos3x + \cos2x = \sin\frac{3x}{2} + \sin\frac{x}{2}

    2cos5x2cosx22sinxcosx2=0\Rightarrow 2\cos\frac{5x}{2}\cos\frac{x}{2} - 2\sin x\cos\frac{x}{2} = 0

    2cosx2[cos5x2sinx]=0\Rightarrow 2\cos\frac{x}{2}\left[\cos\frac{5x}{2} - \sin x\right] = 0

    If cosx2=0x2=(n+12)π\cos\frac{x}{2} = 0 \Rightarrow \frac{x}{2} = \left(n + \frac{1}{2}\right)\pi

    x=(2n+1)πx = (2n + 1)\pi

    If cos5x2=sinx=cos(π2x)\cos\frac{5x}{2} = \sin x = \cos\left(\frac{\pi}{2} - x\right)

    5x2=2nπ±(π2x)\Rightarrow \frac{5x}{2} = 2n\pi \pm \left(\frac{\pi}{2} - x\right)

    x=(4n+1)π/7,(4n1)π/3\Rightarrow x = (4n + 1)\pi/7, (4n - 1)\pi/3

    Thus, between 00 and 2π2\pi the values of xx are π7,5π7,π,9π7,13π7.\frac{\pi}{7}, \frac{5\pi}{7}, \pi, \frac{9\pi}{7}, \frac{13\pi}{7}.

  40. Given equation is tanx+tan2x+tan3x=tanx.tan2x.tan3x\tan x+ \tan2x + \tan3x = \tan x.\tan2x.\tan3x

    tanx+tan2x=tan3x(tanxtan2x1)\Rightarrow \tan x + \tan2x = \tan3x(\tan x\tan2x - 1)

    tanx+tan2x1tanxtan2x=tan3x\Rightarrow \frac{\tan x + \tan 2x}{1 - \tan x\tan2x} = -\tan3x

    tan(x+2x)=tan3x2tan3x=0\Rightarrow \tan(x + 2x) = -\tan3x \Rightarrow 2\tan 3x = 0

    3x=nπx=nπ3\Rightarrow 3x = n\pi \Rightarrow x = \frac{n\pi}{3}

  41. Given equation is tanx+tan2x+tanxtan2x=1\tan x + \tan 2x + \tan x\tan 2x = 1

    tanx+tan2x=1tanxtan2x\Rightarrow \tan x + \tan2x = 1 - \tan x\tan 2x

    tanx+tan2x1tanxtan2x=1\Rightarrow \frac{\tan x + \tan2x}{1 - \tan x\tan2x} = 1

    tan3x=tanπ4\Rightarrow \tan 3x = \tan\frac{\pi}{4}

    3x=nπ+π4x=(4n+1)π123x = n\pi + \frac{\pi}{4} \Rightarrow x = (4n + 1)\frac{\pi}{12}

  42. Given equation is sin2x+cos2x+sinx+cosx+1=0\sin2x + \cos2x + \sin x + \cos x + 1 = 0

    2sinxcosx+2cos2x1+sinx+cosx+1=0\Rightarrow 2\sin x\cos x + 2\cos^2x - 1 + \sin x + \cos x + 1 = 0

    sinx(2cosx+1)+cosx(2cosx+1)=0\Rightarrow \sin x(2\cos x + 1) + \cos x(2\cos x + 1) = 0

    (2cosx+1)(sinx+cosx)=0\Rightarrow (2\cos x + 1)(\sin x + \cos x) = 0

    If cosx=12x=2nπ±2π3\cos x = -\frac{1}{2} \Rightarrow x = 2n\pi\pm\frac{2\pi}{3}

    If sinx+cosx=0tanx=1x=nππ4\sin x + \cos x = 0 \Rightarrow \tan x = -1 \Rightarrow x = n\pi - \frac{\pi}{4}

  43. We have to prove that sinx+sin2x+sin3x=cosx+cos2x+cos3x\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x

    (sinx+sin3x)+sin2x=(cosx+cos3x)+cos2x\Rightarrow (\sin x + \sin 3x) + \sin 2x = (\cos x + \cos3x) + \cos 2x

    2sin2xcosx+sin2x=2cos2xcosx+cos2x\Rightarrow 2\sin2x\cos x + \sin 2x = 2\cos2x\cos x + \cos 2x

    sin2x(2cosx+1)=cos2x(2cosx+1)\Rightarrow \sin2x(2\cos x + 1) = \cos2x(2\cos x + 1)

    (2cosx+1)(sin2xcos2x)=0\Rightarrow (2\cos x + 1)(\sin2x - \cos2x) = 0

    If 2cosx+1=0x=2nπ±2π32\cos x + 1 = 0 \Rightarrow x = 2n\pi \pm \frac{2\pi}{3}

    If sin2xcos2x=0tan2x=1=tanπ4x=nπ2+π8\sin 2x - \cos2x = 0 \Rightarrow \tan2x = 1 = \tan\frac{\pi}{4} \Rightarrow x = \frac{n\pi}{2}+\frac{\pi}{8}

  44. Given equation is cos6x+cos4x=sin3x+sinx\cos6x + \cos4x = \sin3x + \sin x

    2cos5xcosx=2sin2xcosx\Rightarrow 2\cos5x\cos x = 2\sin2x\cos x

    cosx(cos5xsin2x)=0\Rightarrow \cos x(\cos5x - \sin2x) = 0

    If x=0x=2nπ±π2x = 0 \Rightarrow x = 2n\pi\pm\frac{\pi}{2}

    If cos5x=sin2xcos5x=cos(π22x)\cos5x = \sin2x \Rightarrow \cos5x = \cos\left(\frac{\pi}{2} - 2x\right)

    5x=2nπ±(π22x)\Rightarrow 5x = 2n\pi\pm \left(\frac{\pi}{2} - 2x\right)

    Taking +ve sign 7x=2nπ+π2x=(4n+1)π147x = 2n\pi + \frac{\pi}{2} \Rightarrow x = (4n + 1)\frac{\pi}{14}

    Taling -ve sign 3x=2nππ2x=(4n1)π63x = 2n\pi - \frac{\pi}{2} \Rightarrow x = (4n - 1)\frac{\pi}{6}

  45. Given equation is sec4xsec2x=2\sec4x - \sec2x = 2

    cos2xcos4x=2cos2xcos4x\Rightarrow \cos2x - \cos4x = 2\cos2x\cos4x where cos2x,cos4x0\cos2x, \cos4x\neq 0

    cos2xcos4x=cos6x+cos2x\Rightarrow \cos2x - \cos4x = \cos6x + \cos 2x

    cos6x+cos4x=02cos5xcosx=0\Rightarrow \cos6x + \cos4x = 0 \Rightarrow 2\cos5x\cos x = 0

    If cos5x=05x=2nπ±π2x=2nπ5±π10\cos 5x = 0 \Rightarrow 5x = 2n\pi\pm\frac{\pi}{2}\Rightarrow x = \frac{2n\pi}{5}\pm\frac{\pi}{10}

    If cosx=0x=2nπ±π2\cos x = 0 \Rightarrow x = 2n\pi\pm\frac{\pi}{2}

  46. Given equation is cos2x=(2+1)(cosx12)\cos2x = (\sqrt{2} + 1)\left(\cos x - \frac{1}{\sqrt{2}}\right)

    (2cos2x1)=2+12(2cosx1)\Rightarrow (2\cos^2x - 1) = \frac{\sqrt{2} + 1}{\sqrt{2}}\left(\sqrt{2}\cos x - 1\right)

    (2cosx1)(2cosx+1112)=0\Rightarrow (\sqrt{2}\cos x - 1)\left(\sqrt{2}\cos x + 1 - 1 - \frac{1}{\sqrt{2}}\right) = 0

    (2cosx1)(2cosx1)=0\Rightarrow (\sqrt{2}\cos x - 1)(2\cos x - 1) = 0

    If 2cosx1=0x=2nπ±π4\sqrt{2}\cos x - 1 = 0 \Rightarrow x = 2n\pi \pm \frac{\pi}{4}

    If 2cosx1=0x=2nπ±π32\cos x - 1 = 0 \Rightarrow x = 2n\pi\pm\frac{\pi}{3}

  47. Given equation is 5cos2x+2cos2x2+1=05\cos2x + 2\cos^2\frac{x}{2} + 1 = 0

    10cos2x5+cosx+2=0[cos2x=2cos2x1]\Rightarrow 10\cos^2x - 5 + \cos x + 2 = 0[\because \cos2x = 2\cos^2x - 1]

    10cos2x+cosx3=0\Rightarrow 10\cos^2x + \cos x - 3 = 0

    (2cosx1)(5cosx+3)=0\Rightarrow (2\cos x -1)(5\cos x + 3) = 0

    If cosx=1/2x=π3[πxπ]\cos x = 1/2 \Rightarrow x = \frac{\pi}{3} [\because -\pi \leq x\leq \pi]

    If 5cosx+3=0x=πcos1355\cos x + 3 = 0 \Rightarrow x = \pi - \cos^{-1}\frac{3}{5}

  48. Given equation is cotxtanx=secx\cot x - \tan x = sec x

    cosx(cos2xsin2x)=sinxcosx\Rightarrow \cos x(\cos^2x - \sin^2x) = \sin x\cos x

    cosx(2sin2x+sinx1)=0\Rightarrow \cos x(2\sin^2x + \sin x - 1) = 0

    cosx(2sinx1)(sinx+1)=0\Rightarrow \cos x(2\sin x - 1)(\sin x + 1) = 0

    cosx0\cos x\neq 0 and sin1\sin \neq -1 because that will render original equation meaningless.

    2sinx1=0x=nπ+(1)nπ6\therefore 2\sin x - 1= 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{6}

  49. Given equation is 1+secx=cot2x21 + \sec x = \cot^2\frac{x}{2}

    1+cosxcosx=cos2x2sin2x2\Rightarrow \frac{1 + \cos x}{\cos x} = \frac{\cos^2\frac{x}{2}}{\sin^2\frac{x}{2}}

    2sin2x2cos2x2=cosxcos2x2\Rightarrow 2\sin^2\frac{x}{2}\cos^2\frac{x}{2} = \cos x\cos^2\frac{x}{2}

    cos2x2(2sin2x2cosx)=0\Rightarrow \cos^2\frac{x}{2}\left(2\sin^2\frac{x}{2} - \cos x\right) = 0

    cos2x2(12cosx)=0\Rightarrow \cos^2\frac{x}{2}\left(1 - 2\cos x\right) = 0

    If cosx2=0x2=nπ+pi2x=(2n+1)π\cos\frac{x}{2} = 0 \Rightarrow \frac{x}{2} = n\pi + \frac{pi}{2} \Rightarrow x = (2n + 1)\pi

    If 12cosx=0x=2nπ±π31 - 2\cos x = 0\Rightarrow x = 2n\pi \pm \frac{\pi}{3}

  50. Given equation is cos3xcos3x+sin3xsin3x=0\cos3x\cos^3x + \sin3x\sin^3x = 0

    (4cos3x3cosx)cos3x+(3sinx4sin3x)sin3x=0\Rightarrow (4\cos^3x - 3\cos x)\cos^3x + (3\sin x - 4\sin^3x)\sin^3x = 0

    3(sin4xcos4x)4(sin6xcos6x)=0\Rightarrow 3(\sin^4x - \cos^4x) - 4(\sin^6x - \cos^6x) = 0

    3(sin2xcos2x)4(sin2xcos2x)(sin4x+cos4x+sin2xcos2x)=0\Rightarrow 3(\sin^2x - \cos^2x) - 4(\sin^2x - \cos^2x)(\sin^4x + \cos^4x + \sin^2x\cos^2x) = 0

    cos2x[3+4{sin2x(sin2x+cos2x)+cos4x}]=0\Rightarrow \cos2x[-3 + 4\{\sin^2x(\sin^2x + \cos^2x) + \cos^4x\}] = 0

    cos2x[4cos4x4cos2x+1]=0\Rightarrow \cos 2x[4\cos^4x - 4\cos^2x + 1] = 0

    cos2x(2cos2x1)2=0\Rightarrow \cos2x(2\cos^2x - 1)^2 = 0

    cos32x=0\Rightarrow \cos^32x = 0

    cos2x=0\Rightarrow \cos 2x = 0

    2x=nπ+π2x=(2n+1)π42x = n\pi + \frac{\pi}{2} \Rightarrow x = (2n + 1)\frac{\pi}{4}

  51. Given equation is sin3x+sinxcosx+cos3x=1\sin^3x + \sin x\cos x + \cos^3x = 1

    sin3x+cos3x+sinxcosx1=0\Rightarrow \sin^3x + \cos^3x + \sin x\cos x - 1 = 0

    (sinx+cosx)(sin2xsinxcosx+cos2x)+(sinxcosx1)=0\Rightarrow (\sin x + \cos x)(\sin^2x - \sin x\cos x + \cos^2x) + (\sin x\cos x - 1) = 0

    (1sinxcosx)(sinx+cosx1)=0\Rightarrow (1 - \sin x\cos x)(\sin x + \cos x - 1) = 0

    If 1sinxcosx=0sin2x=21 - \sin x\cos x = 0 \Rightarrow \sin 2x = 2 which is not possible.

    sinx+cosx1=012sinx+12cosx=12\therefore \sin x + \cos x - 1 = 0 \Rightarrow \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}

    cos(xπ4)=cosπ4\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{\pi}{4}

    xπ/4=2nπ±π/4=2nπ,2nπ+π/2\Rightarrow x - \pi/4 = 2n\pi \pm \pi/4 = 2n\pi, 2n\pi + \pi/2

  52. Given equation is sin7x+sin4x+sinx=0\sin 7x + \sin4x + \sin x = 0

    2sin4xcos3x+sin4x=0\Rightarrow 2\sin4x\cos3x + \sin4x = 0

    sin4x(2cos3x+1)=0\Rightarrow \sin4x(2\cos3x + 1) = 0

    If sin4x=0x=nπ/4x=π/4 0xπ/2\sin4x = 0 \Rightarrow x = n\pi/4 \Rightarrow x = \pi/4~\forall 0\leq x\leq\pi/2

    If cos3x=1/2x=2π9,4π9 0xπ/2\cos3x = -1/2 \Rightarrow x = \frac{2\pi}{9}, \frac{4\pi}{9}~\forall 0\leq x\leq\pi/2

  53. Given equation is sinx+3cosx=2\sin x + \sqrt{3}\cos x = \sqrt{2}

    Dividing both sides by 22 [we arrive at this no. by squaring and adding coefficients of sinx\sin x and cosx\cos x and then taking square root]

    12sinx+32cosx=12\Rightarrow \frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x = \frac{1}{\sqrt{2}}

    sinπ6sinx+cosπ6cosx=cosπ4\Rightarrow \sin\frac{\pi}{6}\sin x + \cos\frac{\pi}{6}\cos x = \cos\frac{\pi}{4}

    cos(xπ6)=cosπ4\Rightarrow \cos\left(x - \frac{\pi}{6}\right) = \cos\frac{\pi}{4}

    xπ6=2nπ±π4\Rightarrow x - \frac{\pi}{6} = 2n\pi\pm\frac{\pi}{4}

    x=2nπ±5π12,2nππ12\Rightarrow x = 2n\pi\pm\frac{5\pi}{12}, 2n\pi-\frac{\pi}{12}

  54. We have to find minimum value of 27cos2x.81sin2x27^{\cos2x}.81^{\sin2x}

    27cos2x.81sin2x=33cos2x+4sin2x27^{\cos2x}.81^{\sin2x} = 3^{3\cos2x + 4\sin2x}

    It will be minimum when 3cos2x+4sin2x3\cos2x + 4\sin2x will be minimum.

    Dividing and multiplying with 5,5, we get

    5(35cos2x+45sin2x)5\left(\frac{3}{5}\cos2x + \frac{4}{5}\sin2x\right)

    5cos(2xy)\Rightarrow 5\cos(2x - y) where tany=43\tan y = \frac{4}{3}

    For minimum value cos(2xy)=1=cosπ2xy=2nπ±π\cos(2x - y) = -1 = \cos\pi \Rightarrow 2x - y = 2n\pi\pm\pi

    x=2nπ±π+tan1432,nIx = \frac{2n\pi\pm\pi + \tan^{-1}\frac{4}{3}}{2}, n \in I

    Minimum value will be 35=12433^{-5} = \frac{1}{243}

  55. Given 3cos2x=1cos2x=133\cos 2x = 1 \Rightarrow \cos2x = \frac{1}{3}

    tan2x=1cos2x1+cos2x=12\Rightarrow \tan^2x = \frac{1 - \cos2x}{1 + \cos2x} = \frac{1}{2}

    Given 32tan8x=2cos2y3cosy32\tan^8x = 2\cos^2y - 3\cos y

    32.124=2cos2y3cosy\Rightarrow 32.\frac{1}{2^4} = 2\cos^2y - 3\cos y

    2cos2y3cosy2=0\Rightarrow 2\cos^2y - 3\cos y - 2 = 0

    (2cosy+1)(cosy2)=0(2\cos y + 1)(\cos y - 2) = 0

    cosy22cosy+1=0\because \cos y \neq 2 \Rightarrow 2\cos y + 1 = 0

    y=2nπ±2π3\Rightarrow y = 2n\pi\pm\frac{2\pi}{3}

  56. Given equation is (1tanx)(1+tanx)sec2x+2tan2x=0(1 - \tan x)(1 + \tan x)sec^2x + 2^{\tan^2x} = 0

    (1tan2x)(1+tan2x)+2tan2x=0\Rightarrow (1 - \tan^2x)(1 + \tan^2x) + 2^{\tan^2x} = 0

    1+2tan2x=tan4x\Rightarrow 1 + 2^{\tan^2x} = \tan^4x

    Clearly, tan2x=3\tan^2x = 3 is the solution of the above equation.

    tanx=±3x=nπ±π3\Rightarrow \tan x = \pm\sqrt{3} \Rightarrow x = n\pi\pm\frac{\pi}{3}

    Values of xx in the given interval are ±π3.\pm\frac{\pi}{3}.

  57. Given equation is ecosx=ecosx+4.e^{\cos x} = e^{-\cos x} + 4.

    e2cosx4ecosx1=0\Rightarrow e^{2\cos x} - 4e^{\cos x} - 1= 0

    ecosx=2±5\Rightarrow e^{\cos x} = 2\pm\sqrt{5}

    If ecosx=2+5e^{\cos x} = 2 + \sqrt{5} then cosx>1\cos x > 1 which is not possible.

    If ecosx=25e^{\cos x} = 2 - \sqrt{5} then cosx\cos x is an imaginary number. Thus, no solutions for given equation are possible.

  58. Given equation is (1+tanx)(1+tany)=2(1 + \tan x)(1 + \tan y) = 2

    1+tanx+tany+tanxtany=2\Rightarrow 1 + \tan x + \tan y + \tan x\tan y = 2

    tanx+tany=1tanxtany\Rightarrow \tan x + \tan y = 1 - \tan x\tan y

    tanx+tany1tanxtany=1\Rightarrow \frac{\tan x + \tan y}{1 - \tan x\tan y} = 1

    tan(x+y)=tanπ4\Rightarrow \tan(x + y) = \tan\frac{\pi}{4}

    x+y=nπ±π4\Rightarrow x + y = n\pi\pm\frac{\pi}{4}

  59. Given equation is tan(cotx)=cot(tanx)\tan(\cot x) = \cot(\tan x)

    tan(cotx)=tan(π2tanx)\Rightarrow \tan(\cot x) = \tan\left(\frac{\pi}{2} - \tan x\right)

    cotx=nπ+(π2tanx)\Rightarrow \cot x = n\pi + \left(\frac{\pi}{2} - \tan x\right)

    tanx+cotx=nπ+π2\Rightarrow \tan x + \cot x = n\pi + \frac{\pi}{2}

    sin2x+cos2xsinx+cosx=(2n+1)π/2\Rightarrow \frac{\sin^2x + \cos^2x}{\sin x + \cos x} = (2n + 1)\pi/2

    1sin2x=(2n+1)π/4sin2x=4(2n+1)π\Rightarrow \frac{1}{\sin2x} = (2n + 1)\pi/4 \Rightarrow \sin2x = \frac{4}{(2n + 1)\pi}

  60. We have atanz+bsecz=ca\tan z+ b\sec z = c

    catanz=bsecz(catanz)2=b2sec2z\Rightarrow c - a\tan z = b\sec z \Rightarrow (c - a\tan z)^2 = b^2sec^2z

    (a2b2)tan2x2actanz+(c2b2)=0\Rightarrow (a^2 - b^2)\tan^2x -2ac\tan z + (c^2 - b^2) = 0

    Given that xx and yy are roots of original equation so tanx\tan x and tany\tan y will be roots of last equation.

    tanx+tany=2aca2b2\Rightarrow \tan x + \tan y = \frac{2ac}{a^2 - b^2} and tanxtany=c2b2a2b2\tan x\tan y = \frac{c^2 - b^2}{a^2 - b^2}

    tan(x+y)=tanx+tany1tanxtany=2aca2c2\Rightarrow \tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x\tan y} = \frac{2ac}{a^2 - c^2}

  61. Given sin(πcosx)=cos(πsinx)\sin(\pi\cos x) = \cos(\pi\sin x)

    πcosx=π2πsinx\Rightarrow \pi\cos x = \frac{\pi}{2} - \pi\sin x

    sinx+cosx=12\Rightarrow \sin x + \cos x = \frac{1}{2}

    1. Fividing both sides by 2\sqrt{2}

      sinx2+cosx2=122\Rightarrow \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} = \frac{1}{2\sqrt{2}}

      cos(x±π4)=122\cos\left(x \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}}

    2. Squaring both sides

      sin2x+cos2x+2sinxcosx=14\Rightarrow \sin^2x + \cos^2x + 2\sin x\cos x = \frac{1}{4}

      sin2x=34\Rightarrow \sin 2x = -\frac{3}{4}

  62. Given equation is tan(x+100)=tan(x+50).tanx.tan(x50)\tan(x + 100^\circ) = \tan(x + 50^\circ).\tan x.\tan(x - 50^\circ)

    tan(x+100)tanx=tan(x+50)tan(x50)\Rightarrow \frac{\tan(x+100^\circ)}{\tan x} = \tan(x+50^\circ)\tan(x-50^\circ)

    sin(x+100)cosxcos(x+100)sinx=sin(x+50)sin(x50)cos(x+50)cos(x50)\Rightarrow \frac{\sin(x+100^\circ)\cos x}{\cos(x + 100^\circ)\sin x} = \frac{\sin(x+50^\circ)\sin(x-50^\circ)}{\cos(x+50^\circ)\cos(x-50^\circ)}

    Appplying componendo and dividendo

    sin(x+100)cosx+cos(x+100)sinxsin(x+100)cosxcos(x+100)sinx=sin(x+50)sin(x50)+cos(x+50)cos(x50)sin(x+50)sin(x50)cos(x+50)cos(x50)\Rightarrow \frac{\sin(x + 100^\circ)\cos x + \cos(x + 100^\circ)\sin x}{\sin(x + 100^\circ)\cos x - \cos(x + 100^\circ)\sin x} = \frac{\sin(x+50^\circ)\sin(x-50^\circ) + \cos(x+50^\circ)\cos(x-50^\circ)}{\sin(x+50^\circ)\sin(x-50^\circ) -\cos(x+50^\circ)\cos(x-50^\circ)}

    sin2x+100sin100=cos100cos2x\Rightarrow \frac{\sin 2x + 100^\circ}{\sin100^\circ} = \frac{\cos100^\circ}{-\cos 2x}

    2sin(2x+100)cos2x=2sin100cos100\Rightarrow -2\sin(2x + 100^\circ)\cos2x = 2\sin100^\circ\cos100^\circ

    sin(4x+100)sin100=sin200\Rightarrow -\sin(4x + 100^\circ) - \sin100^\circ = \sin200^\circ

    sin(4x+100)=2sin1506.cos50=cos50=sin220\Rightarrow \sin(4x + 100^\circ) = -2\sin1506\circ.\cos50^\circ = -\cos50^\circ = \sin220^\circ

    Thus, minimum value of xx is 30.30^\circ.

  63. We have to find xx for which tan2x+sec2x=1\tan^2x + \sec 2x = 1

    tan2x+1+tan2x1tan2x=1\Rightarrow \tan^2x + \frac{1 + \tan2x}{1 - \tan^2x} = 1

    tan2xtan4x+1+tan2x=1tan2x\Rightarrow \tan^2x - \tan^4x + 1 + \tan^2x = 1 - \tan^2x

    tan4x3tan2x=0\Rightarrow \tan^4x - 3\tan^2x = 0

    tan2x(tan2x3)=0\Rightarrow \tan^2x(\tan^2x - 3) = 0

    If tan2x=0x=nπ\tan^2x = 0 \Rightarrow x = n\pi

    If tan2x=3x=nπ±π3\tan^2x = 3\Rightarrow x = n\pi\pm\frac{\pi}{3}

    Clearly, for all these values tanx\tan x and sec2x\sec 2x are defined.

  64. Given equation is secxcosecx=43\sec x - \cosec x = \frac{4}{3}

    1cosx1sinx=43\Rightarrow \frac{1}{\cos x}- \frac{1}{\sin x} = \frac{4}{3}

    3(sinxcosx)=4sinxcosx\Rightarrow 3(\sin x - \cos x) = 4\sin x\cos x

    Squaring both sides

    9(sin2x+cos2x2sinxcosx)=16sin2xcos2x\Rightarrow 9(\sin^2x + \cos^2x - 2\sin x\cos x) = 16\sin^2x\cos^2x

    9(1sin2x)=4sin22x\Rightarrow 9(1 - \sin2x) = 4\sin^22x

    4sin22x+9sin2x9=0\Rightarrow 4\sin^22x + 9\sin2x - 9 = 0

    (sin2x+3)(4sin2x3)=0\Rightarrow (\sin2x + 3)(4\sin2x - 3) = 0

    sin2x34sin2x=3x=nπ2+(1)n/2.sin134\sin2x \neq 3\therefore 4\sin2x = 3 \Rightarrow x = \frac{n\pi}{2} + (-1)^n/2.\sin^{-1}\frac{3}{4}

  65. Given equation is sin2x12(sinxcosx)+12=0.\sin2x - 12(\sin x - \cos x) + 12 = 0.

    1sin2x+12(sinxcosx)13=0\Rightarrow 1 - \sin2x + 12(\sin x - \cos x) - 13 = 0

    (sinxcosx)2+12(sinxcosx)13=0\Rightarrow (\sin x - \cos x)^2 + 12(\sin x - \cos x) - 13 = 0

    (sinxcosx1)(sinxcosx+13)=0\Rightarrow (\sin x - \cos x - 1)(\sin x - \cos x + 13) = 0

    Clearly, sinxcosx+130\sin x - \cos x + 13 \neq 0

    sinxcosx=1\therefore \sin x - \cos x = 1

    12sinx12cosx=12\Rightarrow \frac{1}{\sqrt{2}}\sin x - \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}

    sin(xπ4)=sinπ4\Rightarrow \sin\left(x - \frac{\pi}{4}\right) = \sin\frac{\pi}{4}

    x=nπ+(1)nπ4+π4\Rightarrow x = n\pi + (-1)^n\frac{\pi}{4} + \frac{\pi}{4}

  66. Given equation is cos(psinx)=sin(pcosx)\cos(p\sin x) = \sin(p\cos x)

    psinx=2nπ±(π2pcosx)\Rightarrow p\sin x = 2n\pi \pm \left(\frac{\pi}{2} - p\cos x\right)

    Taking positive sign

    psinx=2nπ+π2pcosxp\sin x = 2n\pi + \frac{\pi}{2} - p\cos x

    p(sinx+cosx)=(4n+1)π2\Rightarrow p(\sin x + \cos x) = (4n + 1)\frac{\pi}{2}

    sinx+cosx=(4n+1)π2p\Rightarrow \sin x + \cos x = \frac{(4n + 1)\pi}{2p}

    12sinx+12cosx=(4n+1)π22p\Rightarrow \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{(4n + 1)\pi}{2\sqrt{2}p}

    sin(x+π/4)=(4n+1)p22p\Rightarrow \sin(x + \pi/4) = \frac{(4n + 1)p}{2\sqrt{2}p}

    Clealry, (4n+1)π22p1\left|\frac{(4n + 1)\pi}{2\sqrt{2}p}\right|\leq 1

    p(4n+1)π22\Rightarrow p \geq \frac{(4n + 1)\pi}{2\sqrt{2}}

    For smallest positive value n=0p=π22n = 0 \therefore p = \frac{\pi}{2\sqrt{2}}

    Taking negative sing

    psinx=2nππ2+pcosxp\sin x = 2n\pi - \frac{\pi}{2} + p\cos x

    p(cosxsinx)=2nπ+π2\Rightarrow p(\cos x - \sin x) = -2n\pi + \frac{\pi}{2}

    Proceeding similarly, p(4n+1)π22p \geq \frac{(-4n + 1)\pi}{2\sqrt{2}}

    Smallest positive value of p=π22p = \frac{\pi}{2\sqrt{2}}

  67. Given equation is cosx+3sinx=2cos2x\cos x + \sqrt{3}\sin x = 2\cos2x

    cosx2+3sinx2=cos2x\Rightarrow \frac{\cos x}{2} + \frac{\sqrt{3}\sin x}{2} = \cos 2x

    cos(xπ3)=cos2x\Rightarrow \cos \left(x - \frac{\pi}{3}\right) = \cos 2x

    xπ3=2nπ±2x\Rightarrow x - \frac{\pi}{3} = 2n\pi \pm 2x

    Taking positive sign, x=2nππ3x = -2n\pi - \frac{\pi}{3}

    Taking negative sing x=2nπ3+π9x = \frac{2n\pi}{3} + \frac{\pi}{9}

  68. Given equation is tanx+secx=3\tan x+ \sec x = \sqrt{3}

    sinxcosx+1cosx=3\Rightarrow \frac{\sin x}{\cos x} + \frac{1}{\cos x} = \sqrt{3}

    3cosxsinx=1\Rightarrow \sqrt{3}\cos x - \sin x = 1

    Dividing both sides by 2,2, we get

    32cosx12sinx=12\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x = \frac{1}{2}

    cos(x+π6)=cosπ3\Rightarrow \cos\left(x + \frac{\pi}{6}\right) = \cos \frac{\pi}{3}

    x+π6=2nπ±π3\Rightarrow x + \frac{\pi}{6} = 2n\pi \pm \frac{\pi}{3}

    Taking positive sign

    x=2nπ+π6x = 2n\pi + \frac{\pi}{6}

    Taking negative sign

    x=(4n1)π2x = (4n - 1)\frac{\pi}{2}

    Values of xx between 00 and 2π2\pi are π6,3π2\frac{\pi}{6}, \frac{3\pi}{2}

    However, when x=3π2,cosx=0x = \frac{3\pi}{2}, \cos x = 0 which will be rejected.

    x=π6\therefore x = \frac{\pi}{6}

  69. Given equation is 1+sin3x+cos3x=32sin2x1 + \sin^3x + \cos^3x = \frac{3}{2}\sin2x

    1+sin3x+cos3x=3sinxcosx\Rightarrow 1 + \sin^3x + \cos^3x = 3\sin x\cos x

    1+sin3x+cos3x3sinxcosx=0\Rightarrow 1 + \sin^3x + \cos^3x - 3\sin x\cos x = 0

    (1+sinx+cosx[(1sinx)2+(sinxcosx)2+(cosx1)2]=0[a3+b3+c33abc=(a+b+c).12[(ab)2+(bc)2+(ca)3]]\Rightarrow (1 + \sin x+\cos x[(1 - \sin x)^2 + (\sin x - \cos x)^2 + (\cos x - 1)^2] = 0[\because a^3 + b^3 + c^3 - 3abc = (a + b + c).\frac{1}{2}[(a - b)^2 + (b - c)^2 + (c - a)^3]]

    If 1+sinx+cosx=0cosx+sinx=11 + \sin x + \cos x = 0 \Rightarrow \cos x + \sin x = -1

    12cosx+12sinx=12\Rightarrow \frac{1}{\sqrt{2}}\cos x + \frac{1}{\sqrt{2}}\sin x = \frac{-1}{\sqrt{2}}

    cos(xπ4)=cos3π4\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}

    xπ4=2nπ±3π4x=2nπ+π4±3π4\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm\frac{3\pi}{4} \Rightarrow x = 2n\pi + \frac{\pi}{4}\pm \frac{3\pi}{4}

    else sinx=1,sinx=cosx,cosx=1\sin x = 1, \sin x = \cos x, \cos x = 1 which is not possible.

  70. Given equation is (2+3)cosx=1sinx(2 + \sqrt{3})\cos x = 1 - \sin x

    1sinxcosx=2+3\Rightarrow \frac{1 - \sin x}{\cos x} = 2 + \sqrt{3}

    1sinxcosx.1+sinx1+sinx=(2+3).2323\Rightarrow \frac{1 - \sin x}{\cos x}.\frac{1 + \sin x}{1 + \sin x} = (2 + \sqrt{3}).\frac{2 - \sqrt{3}}{2 - \sqrt{3}}

    cosx1+sinx=123\Rightarrow \frac{\cos x}{1 + \sin x} = \frac{1}{2 - \sqrt{3}} [note that we have cancelled cosx\cos x here]

    1+sinxcosx=23\Rightarrow \frac{1 + \sin x}{\cos x} = 2 - \sqrt{3}

    1+sinx+1sinxcosx=2+3+23\Rightarrow \frac{1 + \sin x + 1 - \sin x}{\cos x} = 2 + \sqrt{3} + 2 - \sqrt{3}

    2cosx=4cosx=12x=2nπ±π3\Rightarrow \frac{2}{\cos x} = 4 \Rightarrow \cos x = \frac{1}{2} \Rightarrow x = 2n\pi \pm \frac{\pi}{3}

    Since we have cancelled cosx\cos x one of the possible solutions is cosx=0x=2nπ+π2\cos x = 0 \Rightarrow x = 2n\pi + \frac{\pi}{2}

  71. Given equation is tan(π2sinx)=cot(π2cosx)\tan\left(\frac{\pi}{2}\sin x\right) = \cot\left(\frac{\pi}{2}\cos x\right)

    π2sinx=π2π2cosx\Rightarrow \frac{\pi}{2}\sin x = \frac{\pi}{2} - \frac{\pi}{2}\cos x

    sinx=1cosx\Rightarrow \sin x = 1 - \cos x

    sinx+cosx=1\Rightarrow \sin x + \cos x = 1

    12sinx+12cosx=12\Rightarrow \frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x = \frac{1}{\sqrt{2}}

    cos(xπ4)=cosπ4\Rightarrow \cos(x - \frac{\pi}{4}) = \cos \frac{\pi}{4}

    xπ4=2nπ±π4\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm \frac{\pi}{4}

    Taking positive sign x=2nπ+π/2x = 2n\pi + \pi/2

    Taking negative sign x=2nπx = 2n\pi

  72. Given equation is 8cosxcos2xcos4x=sin6xsinx8\cos x\cos2x\cos4x = \frac{\sin6x}{\sin x}

    8sinxcosxcos2xcos4x=sin6x\Rightarrow 8\sin x\cos x\cos2x\cos4x = \sin6x

    4sin2xcos2xcos4x=sin6x\Rightarrow 4\sin2x\cos2x\cos4x = \sin6x

    2sin4xcos4x=sin6xsin8x=sin6x\Rightarrow 2\sin4x\cos4x = \sin6x \Rightarrow \sin8x = \sin6x

    2cos7xsinx=0\Rightarrow 2\cos7x\sin x = 0

    If cos7x=07x=(2n+1)π2x=(2n+1)π14\cos7x = 0 \Rightarrow 7x = (2n + 1)\frac{\pi}{2}\Rightarrow x = (2n + 1)\frac{\pi}{14}

    sinx\sin x cannot be zeor as it is in denominator.

  73. Given equation is 32cosx4sinxcos2x+sin2x=03 - 2\cos x - 4\sin x -\cos 2x + \sin 2x = 0

    32cosx4sinx(12sin2)+2sinxcosx=0\Rightarrow 3 - 2\cos x - 4\sin x -(1 - 2\sin^2) + 2\sin x\cos x = 0

    2(sin2x2sinx+1)+2cosx(sinx1)=0\Rightarrow 2(\sin^2x - 2\sin x + 1) + 2\cos x(\sin x -1) = 0

    (sinx1)(2cosx+2sinx2)=0\Rightarrow (\sin x- 1)(2\cos x + 2\sin x - 2) = 0

    If sinx1=0x=nπ+(1)nπ2\sin x - 1 = 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{2}

    If sinx+cosx=1\sin x + \cos x = 1

    Like previous examples x=2nπ,2nπ+π2x = 2n\pi, 2n\pi + \frac{\pi}{2}

  74. Given equation is sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x

    2sin2xcosx3sin2x=2cos2xcosx3cos2x\Rightarrow 2\sin2x\cos x - 3\sin 2x = 2\cos2x\cos x - 3\cos 2x

    sin2x(2cosx3)=cos2x(2cosx3)\Rightarrow \sin2x(2\cos x - 3) = \cos2x(2\cos x - 3)

    2cosx3sin2x=cos2x\because 2\cos x \neq 3 \therefore \sin 2x = \cos 2x

    12cos2x12sin2x=0\Rightarrow \frac{1}{\sqrt{2}}\cos2x - \frac{1}{\sqrt{2}}\sin2x = 0

    2x+π/4=nπx=nπ/2+π/8\Rightarrow 2x + \pi/4 = n\pi \Rightarrow x = n\pi/2 + \pi/8

  75. Given equation is sin2xtanx+cos2xcotxsin2x=1+tanx+cotx\sin^2x\tan x + \cos^2x\cot x - \sin 2x = 1 + \tan x + \cot x

    sin3xcosx+cos3xsinxsin2x=1+sinxcosx+cosxsinx\Rightarrow \frac{\sin^3x}{\cos x} + \frac{\cos^3x}{\sin x} - \sin 2x = 1 + \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x}

    sin4x+cos4xsinxcosxsin2x=sinxcosx+sin2x+cos2xsinxcosx\Rightarrow \frac{\sin^4x + \cos^4x}{\sin x\cos x} - \sin2x = \frac{\sin x\cos x + \sin^2x + \cos^2x}{\sin x\cos x}

    12sin2xcos2xsinxcosxsin2x=1+1sinxcosx\Rightarrow \frac{1 - 2\sin^2x\cos^2x}{\sin x\cos x} - \sin2x = 1 + \frac{1}{\sin x\cos x}

    2sinxcosxsin2x=1\Rightarrow -2\sin x\cos x - \sin 2x = 1

    sin2x=1/22x=nπ+(1)n+1π6\Rightarrow \sin 2x = -1/2 \Rightarrow 2x = n\pi + (-1)^{n + 1}\frac{\pi}{6}

    x=nπ2+(1)n+1π12\Rightarrow x = \frac{n\pi}{2} + (-1)^{n + 1}\frac{\pi}{12}

  76. sinx=12x=7π6,11π6\sin x = -\frac{1}{2} \Rightarrow x = \frac{7\pi}{6}, \frac{11\pi}{6}

    tanx=13x=π6,7π6\tan x = \frac{1}{\sqrt{3}}\Rightarrow x = \frac{\pi}{6}, \frac{7\pi}{6}

    So common value is 7π6\frac{7\pi}{6}

    Period of sinx\sin x is 2π2\pi and period of tanx\tan x is nπn\pi so common period is 2nπ2n\pi

    Thus, most general value of xx is 2nπ+7π62n\pi +\frac{7\pi}{6}

  77. tan(xy)=1xy=π4,5π4\tan(x - y) = 1 \Rightarrow x - y = \frac{\pi}{4}, \frac{5\pi}{4}

    sec(x+y)=23x+y=π6,11π6\sec(x + y) = \frac{2}{\sqrt{3}}\Rightarrow x + y = \frac{\pi}{6}, \frac{11\pi}{6}

    Since xx and yy are positve so x+y>xyx + y > x - y

    When xy=π4x - y = \frac{\pi}{4} and x+y=11π6x + y = \frac{11\pi}{6}

    x=25π24y=19π24x = \frac{25\pi}{24} y = \frac{19\pi}{24}

    When xy=5π5x - y = \frac{5\pi}{5} and x+y=11π6x + y = \frac{11\pi}{6}

    x=37π24,y=7π24x = \frac{37\pi}{24}, y = \frac{7\pi}{24}

    General Solution:

    tan(xy)=1xy=mπ+π4\tan(x - y) = 1 \Rightarrow x - y = m\pi + \frac{\pi}{4}

    sec(x+y)=23x+y=2nπ±π6\sec(x + y) = \frac{2}{\sqrt{3}} \Rightarrow x + y = 2n\pi \pm \frac{\pi}{6}

    x=(2m+n)π2+π8±π12x = (2m + n)\frac{\pi}{2} + \frac{\pi}{8}\pm \frac{\pi}{12}

    y=(2mn)π2pi8±π12y = (2m - n)\frac{\pi}{2} - \frac{pi}{8}\pm \frac{\pi}{12}

  78. Given curves are y=cosxy = \cos x and y=sin3xy = \sin 3x

    For intersection point both the equations must be satisfied, thus

    cosx=sin3x=cos(π23x)\cos x = \sin 3x = \cos\left(\frac{\pi}{2} - 3x\right)

    x=2nπ±(π23x)\Rightarrow x = 2n\pi \pm \left(\frac{\pi}{2} - 3x\right)

    x=nπ2+π8,nπ+π4\Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}, n\pi + \frac{\pi}{4}

    So in the given interval values of xx are π8,3π8,π4.\frac{\pi}{8}, -\frac{3\pi}{8}, \frac{\pi}{4}.

  79. From first equation rsinx=3r=3sinxr\sin x = \sqrt{3} \Rightarrow r = \frac{\sqrt{3}}{\sin x}

    Substituting this value in the second equagtion, we get

    3sinx+4sinx=2(3+1)\frac{\sqrt{3}}{\sin x} + 4\sin x = 2(\sqrt{3} + 1)

    4sin2x23sinx2sinx+3=0\Rightarrow 4\sin^2x - 2\sqrt{3}\sin x - 2\sin x + \sqrt{3} = 0

    (2sinx3)(2sinx1)=0\Rightarrow (2\sin x - \sqrt{3})(2\sin x - 1) = 0

    If 2sinx3=0x=nπ+(1)nπ32\sin x - \sqrt{3} = 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{3}

    If 2sinx1=0x=nπ+(1)nπ62\sin x - 1 = 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{6}

    Thus, for ox2π,x=π6,π3,2π3,5π6o\leq x\leq 2\pi, x = \frac{\pi}{6}, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{6}

  80. Given xy=π4x - y = \frac{\pi}{4} and cotx+coty=2\cot x + \cot y = 2

    From second equation cosxsinx+cosysiny=2\frac{\cos x}{\sin x} + \frac{\cos y}{\sin y} = 2

    sin(x+y)=2sinxsiny=cos(xy)cos(x+y)=cosπ4cos(x+y)\Rightarrow \sin(x + y) = 2\sin x\sin y = \cos(x - y) - \cos(x + y) = \cos \frac{\pi}{4} - \cos(x + y)

    sin(x+y)+cos(x+y)=cosπ4\Rightarrow \sin(x + y) + \cos (x + y) = \cos\frac{\pi}{4}

    12sin(x+y)+12cos(x+y)=12=cosπ3\Rightarrow \frac{1}{\sqrt{2}}\sin(x + y) + \frac{1}{\sqrt{2}}\cos(x + y) = \frac{1}{2} = \cos\frac{\pi}{3}

    cos(x+yπ/4)=cosπ3\Rightarrow \cos(x + y - \pi/4) = \cos\frac{\pi}{3}

    x+yπ4=2nπ±π3\Rightarrow x + y - \frac{\pi}{4} = 2n\pi\pm \frac{\pi}{3}

    x+y=2nπ±π3+π4x + y = 2n\pi \pm \frac{\pi}{3} + \frac{\pi}{4}

    For n=0,x+y=7π12[x,y>0]n = 0, x + y = \frac{7\pi}{12}[\because x, y > 0]

    x=5π12,y=π6\Rightarrow x = \frac{5\pi}{12}, y = \frac{\pi}{6}

  81. Given equations are 5sinxcosy=15\sin x\cos y = 1 and 4tanx=tany4\tan x = \tan y

    4sinxcosx=sinycosy\Rightarrow 4\frac{\sin x}{\cos x} = \frac{\sin y}{\cos y}

    4sinxcosy=sinycosx45=sinycosx\Rightarrow 4\sin x\cos y = \sin y \cos x \Rightarrow \frac{4}{5} = \sin y\cos x

    Thus, sinxcosy+cosxsiny=1\sin x\cos y + \cos x\sin y = 1

    sin(x+y)=sinπ2\Rightarrow \sin(x + y) = \sin\frac{\pi}{2}

    x+y=nπ+(1)nπ2\Rightarrow x + y = n\pi + (-1)^n\frac{\pi}{2}

    and sinxcosycosxsiny=35\sin x\cos y - \cos x\sin y = -\frac{3}{5}

    sin(xy)=35\Rightarrow \sin(x - y) = -\frac{3}{5}

    xy=nπ+(1)ksin135\Rightarrow x - y = n\pi + (-1)^k\sin^{-1}\frac{-3}{5}

    x=12[(nk)π+(1)nπ2+(1)ksin135]\therefore x = \frac{1}{2}\left[(n - k)\pi +(-1)^n\frac{\pi}{2} + (-1)^k\sin^{-1}\frac{-3}{5}\right]

    and y=12[(nk)π+(1)nπ2(1)ksin135]y = \frac{1}{2}\left[(n - k)\pi +(-1)^n\frac{\pi}{2} - (-1)^k\sin^{-1}\frac{-3}{5}\right]

  82. Given equations are rsinx=3r\sin x = 3 and r=4(1+sinx)r = 4(1 + \sin x)

    r=3sinx\Rightarrow r = \frac{3}{\sin x}

    Substituting this in second equation

    3=4sinx+4sin2x4sin2x+4sinx3=03 = 4\sin x + 4\sin^2x \Rightarrow 4\sin^2x + 4\sin x - 3 = 0

    (2sinx+3)(2sinx1)=0\Rightarrow (2\sin x + 3)(2\sin x - 1) = 0

    2sin32sinx=1\because 2\sin \neq -3 \therefore 2\sin x = 1

    x=nπ+(1)nπ6x = n\pi + (-1)^n\frac{\pi}{6}

    Thus, values of xx between 00 and 2π2\pi are π/6\pi/6 and 5π/6.5\pi/6.

  83. Given sinx=siny\sin x = \sin y and cosx=cosy\cos x = \cos y

    Clearly, one of the solutions is x=yx = y

    x=nπ+(1)nyx = n\pi + (-1)^ny and x=2nπ±yx = 2n\pi\pm y

    xy=2nπ\therefore x - y = 2n\pi is the only other solution.

  84. Given equations are cos(xy)=12\cos(x - y) = \frac{1}{2} and sin(x+y)=12\sin(x + y) = \frac{1}{2}

    xy=π3x - y = \frac{\pi}{3}

    x+y=π6,5π6x + y = \frac{\pi}{6}, \frac{5\pi}{6}

    For positive values of xx and y,x+y>xyy, x + y > x - y

    x+y=5π6\therefore x + y = \frac{5\pi}{6}

    2x=7π6x=7π122x = \frac{7\pi}{6}\Rightarrow x = \frac{7\pi}{12}

    y=π4\Rightarrow y = \frac{\pi}{4}

    General values:

    xy=2nπ±π3x - y = 2n\pi \pm \frac{\pi}{3}

    x+y=mπ+(1)mpi6x + y = m\pi + (-1)^m\frac{pi}{6}

    x=(2n+m)π2±π6+(1)mπ12\therefore x = (2n + m)\frac{\pi}{2}\pm\frac{\pi}{6} + (-1)^m\frac{\pi}{12}

    and y=(m2n)π2π6+(1)mπ12y = (m - 2n)\frac{\pi}{2}\mp\frac{\pi}{6} + (-1)^m\frac{\pi}{12}

  85. Given curves are y=cos2xy = \cos 2x and y=sinxy = \sin x

    For them to intersect both equations must be satisfied together. Thus,

    cos2x=sinx\cos2x = \sin x

    2sin2x+sinx1=0\Rightarrow 2\sin^2x + \sin x - 1 = 0

    (2sinx1)(sinx+1)=0\Rightarrow (2\sin x - 1)(\sin x + 1) = 0

    If 2sinx1=0x=π6[π2xπ2]2\sin x - 1 = 0 \Rightarrow x = \frac{\pi}{6} [\because -\frac{\pi}{2}\leq x\leq \frac{\pi}{2}]

    y=12.y = \frac{1}{2}. So the point is (π6,12)\left(\frac{\pi}{6}, \frac{1}{2}\right)

    If sinx=1x=π2\sin x = -1 \Rightarrow x = -\frac{\pi}{2}

    So the point is (π2,1)\left(-\frac{\pi}{2}, -1\right)

  86. Given equations are cosx=12\cos x = \frac{1}{\sqrt{2}} and tanx=1\tan x = -1

    x=2nπ±π4\Rightarrow x = 2n\pi \pm \frac{\pi}{4} and x=mππ4x = m\pi - \frac{\pi}{4}

    2nπ±π42n\pi \pm \frac{\pi}{4} lies in first and fourth quadrant while mππ4m\pi - \frac{\pi}{4} lies in second and fouth quadrant.

    Thus, most general value will be 2kπ+7π4.2k\pi + \frac{7\pi}{4}.

  87. Given equations are tanx=3\tan x = \sqrt{3} and cosecx=23\cosec x = -\frac{2}{\sqrt{3}}

    x=nπ+π3\Rightarrow x = n\pi + \frac{\pi}{3} and x=mπ+(1)m+1π3x = m\pi + (-1)^{m + 1}\frac{\pi}{3}

    nπ+π3n\pi + \frac{\pi}{3} lies in first and third quadrant while mπ+(1)m+1π3m\pi + (-1)^{m + 1}\frac{\pi}{3} lies in third and fourth quadrant.

    Therefore common general value is 2nπ+4π3.2n\pi + \frac{4\pi}{3}.

  88. Since x,yx, y satisfies 3cosz+4sinz=2,3\cos z + 4\sin z = 2, therefore

    3cosx+4sinx=23\cos x + 4\sin x = 2 and 3cosy+4siny=23\cos y + 4\sin y = 2

    Subtracting, we get

    3(cosxcosy)+4(sinxsiny)=03(\cos x - \cos y) + 4(\sin x - \sin y) = 0

    6sinx+y2sinyx2+8cosx+y2sinxy2=0\Rightarrow 6\sin\frac{x + y}{2}\sin\frac{y - x}{2} + 8\cos\frac{x + y}{2}\sin\frac{x - y}{2} = 0

    2sinxy2[4cosx+y23sinx+y2]=0\Rightarrow 2\sin\frac{x - y}{2}\left[4\cos\frac{x + y}{2} - 3\sin\frac{x + y}{2}\right] = 0

    sinxy20xy\sin\frac{x - y}{2}\neq 0 \because x\neq y

    tanx+y2=43sin(x+y)=2425\therefore \tan\frac{x + y}{2} = \frac{4}{3} \Rightarrow \sin(x + y) = \frac{24}{25}

  89. Let y=2cos2x2sin2x=x2+x2y = 2\cos^2\frac{x}{2}\sin^2x = x^2+ x^{-2}

    y=(1+cosx)sin2x=[<2].[1][0<xπ2]y = (1 + \cos x)\sin^2x = [< 2].[\leq 1] [\because 0<x\leq \frac{\pi}{2}]

    y<2y < 2

    y=x2+x2=(x1x)2+22y = x^2 + x^{-2} = \left(x - \frac{1}{x}\right)^2 + 2\geq 2

    Thus no solution is possible.

  90. Given equation is y=3+2isinx12isinxy = \frac{3 + 2i\sin x}{1 - 2i\sin x}

    =3+2isinx12isinx.1+2isinx1+2isinx= \frac{3 + 2i\sin x}{1 - 2i\sin x}.\frac{1 + 2i\sin x}{1 + 2i\sin x}

    =34sin2x1+4sin2x+i8sinx1+4sin2x= \frac{3 - 4\sin^2x}{1 + 4\sin^2x} + i\frac{8\sin x}{1 + 4\sin^2x}

    For yy to be purely real, imaginary part has to be zero.

    sinx=0x=nπ\Rightarrow \sin x = 0 \Rightarrow x = n\pi

    For yy to be purely imaginary, real part has to be zero.

    sinx=±32\Rightarrow \sin x = \pm\frac{\sqrt{3}}{2}

    x=nπ+(1)n(±π3)x = n\pi + (-1)^n\left(\pm\frac{\pi}{3}\right)

  91. Given equation is a22a+sec2π(a+x)=0a^2 - 2a + \sec^2\pi(a + x) = 0

    a22a+1+tan2π(a+x)=0\Rightarrow a^2 - 2a + 1 + \tan^2\pi(a + x) = 0

    (a1)2+tan2π(a+x)=0\Rightarrow (a - 1)^2 + \tan^2\pi(a + x) = 0

    For L.H.S. to be zero both terms must be zero. Thus, (a1)2=0(a - 1)^2 = 0

    a=1\Rightarrow a = 1 and tan2π(1+x)=0\tan^2\pi(1 + x) = 0

    π(1+x)=nπ\Rightarrow \pi(1 + x) = n\pi

    x=n1=mx = n - 1 = m where mIm\in I

  92. Given equation is 81+cosx+cos2x+cos3x+ to =438^{1 + |\cos x| + \cos^2x + |\cos^3 x| + \ldots \text{~to~}\infty} = 4^3

    1+cosx+cos2x+cos3x+ to =2\Rightarrow 1 + |\cos x| + \cos^2x + |\cos^3 x| + \ldots \text{~to~}\infty = 2

    This is a geomtric progression with common ratio cosx.|\cos x|. We know that cosx1|\cos x|\leq 1 but cosx=1|\cos x| =1 will render the previous equation meaningless(=2\infty=2)

    11cosx=2cosx=12\Rightarrow \frac{1}{1 - |\cos x|} = 2 \Rightarrow |\cos x| = \frac{1}{2}

    cosx=±12x=2nπ±π3,2nπ±2π3\cos x = \pm\frac{1}{2} \Rightarrow x = 2n\pi\pm\frac{\pi}{3}, 2n\pi\pm\frac{2\pi}{3}

    The values of xx in the given interval are ±π3,±2π3\pm\frac{\pi}{3}, \pm\frac{2\pi}{3}

  93. Given equation is cosxsin2x32sinx+12=1|\cos x|^{\sin^2x - \frac{3}{2}\sin x + \frac{1}{2}} = 1

    Taking log of both sides,

    (sin2x32sinx+12)logcosx\left(\sin^2x - \frac{3}{2}\sin x + \frac{1}{2}\right)\log |\cos x|

    If sin2x32sinx+12=0\sin^2x - \frac{3}{2}\sin x + \frac{1}{2} = 0

    (sinx1)(2sinx1)=0\Rightarrow (\sin x - 1)(2\sin x - 1) = 0

    When sinx=1cosx=0\sin x = 1 \Rightarrow |\cos x| = 0 which is not a solution because it means 000^0 for original equation.

    If 2sinx1=0x=nπ+(1)nπ62\sin x - 1= 0 \Rightarrow x = n\pi + (-1)^n\frac{\pi}{6}

    If logcosx=0cosx=±1\log|\cos x| = 0 \Rightarrow \cos x = \pm1

    x=2nπ,2nπ±πx = 2n\pi, 2n\pi\pm\pi

  94. Given equation is 3sin2x+2cos2x+31sin2x+2sin2x=28.3^{\sin2x + 2\cos^2x} + 3^{1 -\sin2x + 2\sin^2x} = 28.

    3sin2x+2cos2x+33sin2x+2cos2x=28\Rightarrow 3^{\sin2x + 2\cos^2x} + 3^{3 - \sin2x + 2\cos^2x} = 28

    3sin2x+2cos2x+333sin2x+2cos2x=28\Rightarrow 3^{\sin2x + 2\cos^2x} + \frac{3^3}{3^{\sin2x + 2\cos^2x}} = 28

    Let 3sin2x+2cos2x=y3^{\sin2x + 2\cos^2x} = y

    y+27y=28\Rightarrow y + \frac{27}{y} = 28

    (y1)(y27)=0\Rightarrow (y - 1)(y - 27) = 0

    If y=27sin2x+2cos2x=3y = 27 \Rightarrow \sin2x + 2\cos^2x = 3 which is not possible for any value of x.x.

    If y=1sin2x+2cos2x=02cosx(sinx+cosx)=0y = 1 \Rightarrow \sin 2x + 2\cos^2x = 0 \Rightarrow 2\cos x(\sin x + \cos x) = 0

    cosx=0x=2nπ+π2\cos x = 0 \Rightarrow x = 2n\pi + \frac{\pi}{2}

    If sinx+cosx=0tanx=1=tan(π4)\sin x + \cos x = 0 \Rightarrow \tan x = -1 = \tan\left(-\frac{\pi}{4}\right)

    x=nππ4x = n\pi - \frac{\pi}{4}

  95. Given 2cos2x+sinx22(1sin2x)+sinx22\cos^2x + \sin x\leq 2 \Rightarrow 2(1 - \sin^2x) + \sin x\leq 2

    2sin2x+sinx0\Rightarrow -2\sin^2x + \sin x\leq 0

    sinx(2sinx1)0\Rightarrow \sin x(2\sin x - 1)\geq 0

    sinx0\Rightarrow \sin x \leq 0 or sinx12\sin x\geq \frac{1}{2}

    πx2π\Rightarrow \pi \leq x \leq 2\pi or π6x5π6\frac{\pi}{6}\geq x \leq \frac{5\pi}{6}

    Also, π2x3π2\frac{\pi}{2}\leq x\leq \frac{3\pi}{2} from second condition.

    Thus intersection of these two will be the solution.

    AB={x/πx3π2,π2x5π6}\Rightarrow A\cap B = \left\{x/\pi\leq x\leq \frac{3\pi}{2}, \frac{\pi}{2}\leq x\leq\frac{5\pi}{6}\right\}

  96. Given equation is sinx+cosx=1+sinxcosx\sin x + \cos x = 1 + \sin x\cos x

    Squaring sin2x+cos2x+2sinxcosx=1+sin2xcos2x+2sinxcosx\sin^2x + \cos^2x + 2\sin x\cos x = 1 + \sin^2x\cos^2x + 2\sin x\cos x

    1+sin2x=1+sin2x+sin2xcos2x\Rightarrow 1 + \sin 2x = 1 + \sin 2x + \sin^2x\cos^2x

    sinx=0\Rightarrow \sin x = 0 or cosx=0\cos x = 0

    x=nπx = n\pi or x=2nπ±π2x = 2n\pi \pm \frac{\pi}{2}

  97. Given sin6x+cos4x+2=0\sin 6x + \cos4x + 2 = 0

    sin6x=1\Rightarrow \sin6x = -1 and cos4x=1\cos4x=-1 and both must be satisfied simultaneously.

    6x=2nπ+3π2x=nπ/3+π/4\Rightarrow 6x = 2n\pi + \frac{3\pi}{2} \Rightarrow x = n\pi/3 + \pi/4

    4x=2nπ+πx=nπ/2+π/4\Rightarrow 4x = 2n\pi + \pi \Rightarrow x = n\pi/2 + \pi/4

    Thus, general solution is mπ+π/4m\pi + \pi/4

  98. Let n=3n = 3 then

    sin2x+sin3x=2\sin 2x + \sin 3x = 2

    This will be true if sin2x=1\sin 2x = 1 and sin3x=1\sin3x =1 simultaneously.

    x=π4,5π4\Rightarrow x = \frac{\pi}{4}, \frac{5\pi}{4} and x=π6,5π6,9π6x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{9\pi}{6}

    Clearly there is no solution for n=3n =3 and thus there will be no solution for higher vallues of n.n.

  99. Given equation is cos7x+sin4x=1\cos^7x + \sin^4x = 1

    cos7xcos2x\cos^7x \leq \cos^2x and sin4xsin2x\sin^4x\leq \sin^2x

    cos7x+sin4x1\therefore \cos^7x + \sin^4x \leq 1

    The equality is satisfied only when cos7x=cos2x\cos^7x = \cos^2x and sin4x=sin2x\sin^4x = \sin^2x

    x=(2n+1)π2\Rightarrow x = (2n + 1)\frac{\pi}{2} or x=2nπx = 2n\pi

  100. Given equation is sin3xsinx2sin2x+3=0\sin3x -\sin x -2\sin2x + 3 = 0

    2sinxcos2x4sinxcosx+3=0\Rightarrow 2\sin x\cos2x - 4\sin x\cos x + 3 = 0

    sinx(2cos2x4cosx)+3=0\Rightarrow \sin x(2\cos2x - 4\cos x) + 3 = 0

    sinx(4cos2x4cosx2)+3=0\Rightarrow \sin x(4\cos^2x - 4\cos x -2) + 3 = 0

    sinx(2cosx1)2+3(1sinx)=0\Rightarrow \sin x(2\cos x - 1)^2 + 3(1 - \sin x) = 0

    In the interval 0xπ,1sinx00\leq x\leq \pi, 1 - \sin x\geq 0

    Also,, (2cosx1)20(2\cos x - 1)^2\geq 0

    Thus above equation holds true only if sinx(2cosx1)2=0\sin x(2\cos x - 1)^2 = 0 and 1sinx=01 - \sin x = 0

    sinx=1cosx=0sinx(2cosx1)2=10\sin x = 1 \Rightarrow \cos x = 0 \Rightarrow \sin x(2\cos x - 1)^2 = 1\neq 0

    Thus all the equations are not satisfied simultaneously. Hence, no solution is possible.

  101. Given equation is sinx+cos(k+x)+cos(kx)=2\sin x + \cos(k + x) + \cos(k - x) = 2

    sinx+2coskcosx=2\Rightarrow \sin x + 2\cos k\cos x = 2

    Dividing both sides by 1+4cos2k\sqrt{1 + 4\cos^2k}

    sinx1+4cos2k +2coskcosx1+4cos2k=21+4cos2k\frac{\sin x}{\sqrt{1 + 4\cos^2k}}\ + \frac{2\cos k\cos x}{\sqrt{1 + 4\cos^2k}} = \frac{2}{\sqrt{1 + 4\cos^2k}}

    L.H.S. if of the form cos(x+y)\cos(x + y) and thus for solutions to exist

    21+4cos2kcos2k342\leq \sqrt{1 + 4\cos^2k} \Rightarrow \cos^2k \geq \frac{3}{4}

    1cos2k14sin2k14\Rightarrow 1 - \cos^2k\leq \frac{1}{4} \Rightarrow \sin^2k\leq \frac{1}{4}

    (sink+12)(sink12)0\Rightarrow \left(\sin k + \frac{1}{2}\right)\left(\sin k - \frac{1}{2}\right)\leq 0

    12sink12\Rightarrow -\frac{1}{2}\leq \sin k\leq \frac{1}{2}

    nππ6leqknπ+π6\Rightarrow n\pi - \frac{\pi}{6}leq k \leq n\pi + \frac{\pi}{6}

  102. Given equations are xcos3y+3xcosy.sin2y=14x\cos^3y + 3x\cos y.\sin^2y = 14 and xsin3y+3xcos2ysiny=13x\sin^3y + 3x\cos^2y\sin y = 13

    Clearly x0,x\neq 0, dividing both the equations

    cos3y+3cosysin2ysin3y+3cos2ysiny=1413\frac{\cos^3y + 3\cos y\sin^2y}{\sin^3y + 3\cos^2y\sin y} = \frac{14}{13}

    By componendo and dividendo, we get

    (cosy+sinycosysiny)3=27\left(\frac{\cos y + \sin y}{cos y - \sin y}\right)^3 = 27

    cosy+sinycosysiny=3\Rightarrow \frac{\cos y + \sin y}{cos y - \sin y} = 3

    Dividing numerator and denominator by cosy,\cos y, we get

    1+tany1tany=3\frac{1 + \tan y}{1 - \tan y} = 3

    tany=12\Rightarrow \tan y = \frac{1}{2}

    When yy is in first quadrant siny=15,cosy=25\sin y = \frac{1}{\sqrt{5}}, \cos y = \frac{2}{\sqrt{5}}

    When yy is in third quadrant siny=15,cosy=25\sin y = -\frac{1}{\sqrt{5}}, \cos y = -\frac{2}{\sqrt{5}}

    Thus, when yy is in first quadrant x=55x = 5\sqrt{5}

    and when yy is in third quadrant x=55.x = -5\sqrt{5}.

  103. Given equation is sin4x+cos4x+sin2x+α=0\sin^4x + \cos^4x + \sin2x + \alpha = 0

    (sin2x+cos2x)22sin2xcos2x+sin2x+α=0\Rightarrow (\sin^2x + \cos^2x)^2 - 2\sin^2x\cos^2x + \sin2x + \alpha = 0

    sin22x2sin2x2(α+1)=0\Rightarrow \sin^22x - 2\sin2x - 2(\alpha + 1) = 0

    The above equation is a quadratic equation in sin2x,\sin2x,

    sin2x=2±4+8(α+1)2=1±2α+3\therefore \sin2x = \frac{2\pm\sqrt{4 + 8(\alpha + 1)}}{2} = 1\pm \sqrt{2\alpha + 3}

    sin2x=1+2α+3\sin2x = 1 + \sqrt{2\alpha + 3} is rejected because it is greater than 11 and if 2α+3=02\alpha + 3 = 0 then it will be included in follwing.

    sin2x=12α+3\therefore \sin2x = 1 - \sqrt{2\alpha + 3}

    For sin2x\sin2x to be real 2α+30\sqrt{2\alpha + 3}\geq 0

    α32\Rightarrow \alpha \geq \frac{-3}{2}

    Also, 1sin2x1α12-1\leq \sin2x\leq 1 \Rightarrow \alpha \leq \frac{1}{2}

    Thus possible solutions are 32α12-\frac{3}{2}\leq \alpha \leq \frac{1}{2}

    The general solution is x=nπ2+(1)nsin1()12α+32x = \frac{n\pi}{2} + (-1)^n\frac{\sin^{-1}()1 - \sqrt{2\alpha + 3}}{2}

  104. Given equation is tan(x+π4)=2cotx1\tan\left(x + \frac{\pi}{4}\right) = 2\cot x - 1

    tanx+tanπ41tanxtanπ4=2tanx1\Rightarrow \frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x\tan\frac{\pi}{4}} = \frac{2}{\tan x} - 1

    (1+tanx)tanx=(1tanx)(2tanx)\Rightarrow (1 + \tan x)\tan x = (1 - \tan x)(2 - \tan x)

    4tanx=2tanx=12\Rightarrow 4\tan x = 2\Rightarrow \tan x = \frac{1}{2}

    x=nπ+tan112x = n\pi + \tan^{-1}\frac{1}{2}

    For tan(x+π4)\tan\left(x + \frac{\pi}{4}\right) to be defined.

    x+π4x + \frac{\pi}{4}\neq odd multiple of π2\frac{\pi}{2}

    x+π4(2n+1)π2x + \frac{\pi}{4}\neq (2n + 1)\frac{\pi}{2}

    Also for cotx\cot x to be defined. xx\neq a multiple of π\pi

    xnπ\Rightarrow x \neq n\pi

    We have restrocted the domain above but there many be a root loss. So we need to check if x=(2n+1)π2x = (2n + 1)\frac{\pi}{2} satisfies the original equation.

    tan(nπ+π2+π4)=1\tan\left(n\pi + \frac{\pi}{2} + \frac{\pi}{4}\right) = -1

    2cotx1=12\cot x - 1 = -1

    Thus, (2n+1)π2(2n + 1)\frac{\pi}{2} is a solution of the equation.

  105. Given equation is acos2z+bsin2z=ca\cos 2z + b\sin2z = c

    bsin2z=cacos2zb2sin22z=(cacos2z)2\Rightarrow b\sin 2z = c - a\cos2z \Rightarrow b^2\sin^22z = (c - a\cos2z)^2

    b2(1cos22z)=c2+a2cos22z2accos2z\Rightarrow b^2(1 - \cos^22z) = c^2 + a^2\cos^22z -2ac\cos2z

    (a2+b2)cos22z2accos2z+c2b2=0\Rightarrow (a^2 + b^2)\cos^22z -2ac\cos2z + c^2 - b^2= 0

    (a2+b2)(2cos2z1)22ac(2cos2z1)+c2b2=0\Rightarrow (a^2 + b^2)(2\cos^2z - 1)^2 - 2ac(2\cos^2z - 1) + c^2 - b^2 = 0

    4(a2+b2)cos4z4(a2+b2+ac)cos2z+(a+c)2=0\Rightarrow 4(a^2 + b^2)\cos^4z - 4(a^2 + b^2 + ac)\cos^2z + (a + c)^2 = 0

    This is a quadratic equation in cos2z,\cos^2z, and sum of roots =4(a2+b2+ac)4(a2+b2)= \frac{4(a^2 + b^2 + ac)}{4(a^2 + b^2)}

    Now of xx and yy satisfy the equation then

    cos2x+cos2y=4(a2+b2+ac)4(a2+b2)\cos^2x + \cos^2y = \frac{4(a^2 + b^2 + ac)}{4(a^2 + b^2)}

  106. Given equation is sin(x+y)=ksin2x\sin(x + y) = k\sin 2x

    sinxcosy+cosxsiny=ksin2x\Rightarrow \sin x\cos y + \cos x\sin y = k\sin2x

    stanx21+tan2xycosy+1tan2x21+tan2x2siny=k.2.2tanx21+tan2x21tan2x21+tan2x2\Rightarrow \frac{s\tan\frac{x}{2}}{1 + \tan^2\frac{x}{y}}\cos y + \frac{1 -\tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}}\sin y = k.2.\frac{2\tan\frac{x}{2}}{1 + \tan^2\frac{x}{2}}\frac{1 - \tan^2\frac{x}{2}}{1 + \tan^2\frac{x}{2}}

    Let tanx2=t,\tan\frac{x}{2} = t, then

    2t(1+t2)cosy+(1t2)(1+t2)siny=4kt(1t2)2t(1 + t^2)\cos y + (1 - t^2)(1 + t^2)\sin y = 4kt(1 - t^2)

    siny.t4(4k+2cosy)t3+(4k2cosy)tsiny=0\Rightarrow \sin y.t^4 - (4k + 2\cos y)t^3 + (4k - 2\cos y)t - \sin y = 0

    If x1,x2,x3,xyx_1, x_2, x_3, x_y are roots of this equation then

    x1=x1+x2+x3+x4=4k+2cosysiny=s1\sum x_1 = x_1 + x_2 + x_3 + x_4 = \frac{4k + 2\cos y}{\sin y} = s_1

    x1x2=x1x2+x2x3+=0=s2\sum x_1x_2 = x_1x_2 + x_2x_3 + \ldots = 0 = s_2

    x1x2x3=2cosy4ksiny=s3\sum x_1x_2x_3 = \frac{2\cos y - 4k}{\sin y} = s_3

    x1x2x3x4=sinysiny=1=s4x_1x_2x_3x_4 = \frac{-\sin y}{\sin y} = -1 = s_4

    Now, tan(x1+x2+x3+x42)=s1s31s2+s4\tan\left(\frac{x_1 + x_2 + x_3 + x_4}{2}\right) = \frac{s_1 - s_3}{1 - s_2 + s_4}

    =8ksiny.0=tanπ2= \frac{8k}{\sin y.0} = \tan\frac{\pi}{2}

    x1+x2+x3+x4=2nπ+πx_1 + x_2 + x_3 + x_4 = 2n\pi + \pi

  107. Given equation is secx+cosecx=c\sec x + \cosec x = c

    sinx+cosx=csinxcosx\Rightarrow \sin x + \cos x = c\sin x\cos x

    Squaring, we get

    1+sin2x=c24sin2x1 + \sin2x = \frac{c^2}{4}\sin2x

    1+2tanx1+tan2x=c24(2tanx1+tan2x)21 + \frac{2\tan x}{1 + \tan^2x} = \frac{c^2}{4}\left(\frac{2\tan x}{1 + \tan^2x}\right)^2

    Let tanx=t,\tan x = t, then

    1+2t1+t2=c24.4t2(1+t2)21 + \frac{2t}{1 + t^2} = \frac{c^2}{4}.\frac{4t^2}{(1 + t^2)^2}

    (1+t+t2)2=t2(c2+1)\Rightarrow (1 + t + t^2)^2 = t^2(c^2 + 1)

    Case I: When c2<8c^2< 8

    (1+t+t2)<9t2\Rightarrow (1 + t + t^2) < 9t^2

    (t2+4t+1)(t22t+1)<0\Rightarrow (t^2 + 4t + 1)(t^2 - 2t + 1) < 0

    t22t+1>0(t1)2>0t^2 - 2t + 1 > 0 \because (t - 1)^2 > 0

    t2+4t+1<0\therefore t^2 + 4t + 1 < 0

    23<t<2+3\Rightarrow 2 - \sqrt{3}< t < -2 + \sqrt{3}

    t\Rightarrow t is negative i.e. tanx\tan x will be negative.

    Thus, it will have two values between 00 and 2π.2\pi.

    Case II: When c2>8c^2 > 8

    (t2+4t+1)(t1)2>0\Rightarrow (t^2 + 4t + 1)(t - 1)^2 > 0

    <t<23\Rightarrow -\infty < t < -2 -\sqrt{3} or 2+3<t<1-2 + \sqrt{3}< t< 1 or 1<t<1< t< \infty

    Thus, tt will be negative and positve and hence tanx\tan x will be positive and negative.

    x\Rightarrow x will have four roots between 00 and 2π.2\pi.

  108. For non-trivial solutions

    λsinαcosα1cosαsinα1sinαcosα=0\begin{vmatrix}\lambda & \sin\alpha & \cos\alpha \\ 1 & \cos\alpha & \sin\alpha \\ -1 & \sin\alpha & -\cos\alpha\end{vmatrix} = 0

    λ(cos2αsin2α)+sinα(sinα+cosα)+cosα(sinα+cosα)=0\Rightarrow \lambda(-\cos^2\alpha - \sin^2\alpha) + \sin\alpha(-\sin\alpha + \cos\alpha) + \cos\alpha(\sin\alpha + \cos\alpha) = 0

    λ=cos2α+sin2α\Rightarrow \lambda = \cos2\alpha + \sin2\alpha

    λ2=cos2α2+sin2α2\Rightarrow \frac{\lambda}{\sqrt{2}} = \frac{\cos2\alpha}{\sqrt{2}} + \frac{\sin2\alpha}{\sqrt{2}}

    Clearly. λ2|\lambda| \leq \sqrt{2}

    When λ=1cos(2απ4)=cosπ4\lambda = 1\Rightarrow \cos\left(2\alpha - \frac{\pi}{4}\right) = \cos\frac{\pi}{4}

    2απ4=2nπ±π4\Rightarrow 2\alpha - \frac{\pi}{4} = 2n\pi\pm\frac{\pi}{4}

    α=nπ,nπ+π4\Rightarrow \alpha = n\pi, n\pi + \frac{\pi}{4}

  109. Given equation is cosxcosycos(x+y)=18\cos x \cos y\cos(x + y) = -\frac{1}{8}

    8cosxcosycos(x+y)+1=0\Rightarrow 8\cos x\cos y\cos(x + y) + 1 = 0

    4[cos(x+y)+cos(xy)]cos(x+y)+1=0\Rightarrow 4[\cos(x + y) + \cos(x - y)]\cos(x + y) + 1 = 0

    4cos2(x+y)+4cos(xy)cos(x+y)+1=0\Rightarrow 4\cos^2(x + y) + 4\cos(x - y)\cos(x + y) + 1 = 0

    This is a quadratic equation in cos(x+y)\cos(x + y)

    For real value of cos(x+y),D0\cos(x + y), D\geq 0

    16cos2(xy)160\Rightarrow 16\cos^2(x - y) - 16\geq0

    sin2(xy)0\Rightarrow \sin^2(x - y)\leq 0

    sin2(xy)=0x=y\Rightarrow \sin^2(x - y) = 0 \Rightarrow x = y

    4cos22x+3cos2x+1=0\Rightarrow 4\cos^22x + 3\cos2x + 1 = 0

    (2cos2x+1)2=0\Rightarrow (2\cos2x + 1)^2 = 0

    cos2x=122α=2π3x=π3\Rightarrow \cos2x = -\frac{1}{2} \Rightarrow 2\alpha = \frac{2\pi}{3}\Rightarrow x = \frac{\pi}{3}

    x=y=π3\therefore x = y = \frac{\pi}{3}

  110. Given sinxcosxcosxcosxsinxcosxcosxcosxsinx=0\begin{vmatrix}\sin x& \cos x & \cos x \\\cos x & \sin x & \cos x\\\cos x & \cos x & \sin x\end{vmatrix} = 0

    C1C1+C2+C3C_1\Rightarrow C_1 + C_2 + C_3 and taking that out

    (sinx+2cosx)1cosxcosx1sinxcosx1cosxsinx=0\Rightarrow (\sin x + 2\cos x)\begin{vmatrix}1 & \cos x & \cos x\\1&\sin x& \cos x\\1&\cos x&\sin x\end{vmatrix} = 0

    (sinx+2cosx)1cosxcosx0sinxcosx000sinxcosx=0\Rightarrow (\sin x + 2\cos x)\begin{vmatrix}1 & \cos x & \cos x\\0 & \sin x - \cos x & 0\\0 & 0 & \sin x - \cos x\end{vmatrix} = 0

    (sinx+2cosx)(sinxcosx)2=0\Rightarrow (\sin x + 2\cos x)(\sin x - \cos x)^2 = 0

    \Rightarrow either tanx=1\tan x = 1 or tanx=2\tan x = -2

    For π4xπ4tan2-\frac{\pi}{4}\leq x\leq \frac{\pi}{4} \tan \neq -2

    tanx=1x=π4\therefore \tan x = 1 \Rightarrow x = \frac{\pi}{4}

  111. Given 3sin2x7sinx+2=0.3\sin^2x - 7\sin x + 2 = 0.

    (sinx2)(3sinx1)=0\Rightarrow (\sin x - 2)(3\sin x - 1) = 0

    sin2sinx=13\because \sin \neq 2 \therefore \sin x = \frac{1}{3}

    x\Rightarrow x will have six values between [0,5π][0, 5\pi]

  112. Given equation is y+cosx=sinxy + \cos x = \sin x

    y2=sinx2cosx2\Rightarrow \frac{y}{\sqrt{2}} = \frac{\sin x}{\sqrt{2}} - \frac{\cos x}{\sqrt{2}}

    y2=cos(xπ4)\Rightarrow \frac{y}{\sqrt{2}} = -\cos\left(x - \frac{\pi}{4}\right)

    1cos(xπ4)1-1 \leq \cos\left(x - \frac{\pi}{4}\right)\leq 1

    2y2\Rightarrow -\sqrt{2}\leq y \leq \sqrt{2}

    If y=1,y = 1, then

    cos(x+π4)=1/2=cosπ4=3π4,5π4[because0x2π]\cos\left(x + \frac{\pi}{4}\right) = -1/\sqrt{2} = -\cos\frac{\pi}{4} = \frac{3\pi}{4}, \frac{5\pi}{4}[because 0\leq x\leq 2\pi]

    x=π2,πx = \frac{\pi}{2}, \pi

  113. Given equation is r=1nsin(rx)sin(r2x)=1\sum_{r = 1}^n\sin(rx)\sin(r^2x) = 1

    tr=122sin(rx)sin(r2x)=12[cos(r2r)xcos(r2+r)x]\Rightarrow t_r = \frac{1}{2}2\sin(rx)\sin(r^2x) = \frac{1}{2}[\cos(r^2 - r)x - \cos(r^2 + r)x]

    t1=12[cos0cos2x]\Rightarrow t_1 = \frac{1}{2}[\cos0 - \cos2x]

    t2=12[cos2xcos6x]t_2 = \frac{1}{2}[\cos2x - \cos6x]

    t3=12[cos6xcos12x]t_3 = \frac{1}{2}[\cos6x - \cos12x]

    \ldots

    tn=12[cos(n2n)xcos(n2+n)x]t_n = \frac{1}{2}[\cos(n^2 - n)x - \cos(n^2 + n)x]

    Adding all these

    r=1nsin(rx)sin(r2x)=12[cos0cos(n2+n)x]=1\sum_{r = 1}^n\sin(rx)\sin(r^2x) = \frac{1}{2}[\cos0 - \cos(n^2 + n)x] = 1

    cos(n2+n)x=1=cosπ\Rightarrow \cos(n^2+ n)x = -1 = \cos\pi

    x=(2m+1)πn(n+1)x = \frac{(2m + 1)\pi}{n(n + 1)}

  114. Given equation is sinx(sinx+cosx)=a\sin x(\sin x + \cos x) = a

    sin2x+sinxcosx=a\Rightarrow \sin^2x + \sin x\cos x = a

    sin2xcos2x=a2+sin4x2asin2x\Rightarrow \sin^2x\cos^2x = a^2 + \sin^4x -2a\sin^2x

    2sin4xsin2x(2a+1)+a2=0\Rightarrow 2\sin^4x - \sin^2x(2a + 1) + a^2 = 0

    This is a quadratic equation in sin2x\sin^2x which is real so D0D\geq 0

    (2a+1)28a20\Rightarrow (2a + 1)^2 - 8a^2 \geq 0

    4a24a10\Rightarrow 4a^2 - 4a - 1\leq 0

    12(12)a12(1+2)\Rightarrow \frac{1}{2}(1 - \sqrt{2})\leq a\leq \frac{1}{2}(1 + \sqrt{2})

  115. Given equation is 2cos2x2+x6=2x+2x2\cos^2\frac{x^2 + x}{6} = 2^x + 2^{-x}

    1cosx2+x61-1 \leq \cos\frac{x^2 + x}{6} \leq 1

    0cos2x2+x61\Rightarrow 0\leq \cos^2\frac{x^2 + x}{6}\leq 1

    Also, becasue A.M. \geq G.M.

    2x+2x22x.2x=1\frac{2^x + 2^{-x}}{2}\geq \sqrt{2^x.2^{-x}} = 1

    cos2x2+x6=1=cos0\Rightarrow \cos^2\frac{x^2 + x}{6} = 1 = \cos 0

    x=0\Rightarrow x = 0

  116. Given inequality is sinxcos2x\sin x\geq \cos2x

    sinx12sin2x\Rightarrow \sin x\geq 1 - 2\sin^2x

    2sin2x+sinx10\Rightarrow 2\sin^2x + \sin x -1 \geq 0

    (2sinx1)(sinx+1)0\Rightarrow (2\sin x - 1)(\sin x + 1)\geq 0

    Limiting value of sinx+1=0sinx=sinπ2\sin x + 1 = 0 \Rightarrow \sin x = -\sin\frac{\pi}{2}

    x=2nππ2x = 2n\pi -\frac{\pi}{2}

    Also, 2sinx10sinx>122nπ+π6x2nπ+5π62\sin x - 1\geq 0 \Rightarrow \sin x>\frac{1}{2}\Rightarrow 2n\pi + \frac{\pi}{6}\leq x \leq 2n\pi + \frac{5\pi}{6}

  117. Given equation is (cosx42sinx)sinx+(1+sinx42cosx)cosx=0\left(\cos\frac{x}{4} - 2\sin x\right)\sin x + \left(1 + \sin \frac{x}{4} -2\cos x\right)\cos x = 0

    sinxcosx42sin2x+cosx+cosxsinx42cos2x=0\Rightarrow \sin x\cos\frac{x}{4} -2\sin^2x + \cos x + \cos x\sin\frac{x}{4} - 2\cos^2x = 0

    sin(x+x4)+cosx=2\sin\left(x +\frac{x}{4}\right) + \cos x = 2

    This is possible only if sin5x4=1\sin\frac{5x}{4} = 1 and cosx=1\cos x = 1 simultaneously.

    5x4=2nπ+π2\frac{5x}{4} = 2n\pi + \frac{\pi}{2} and x=2mπx = 2m\pi

    x=8nπ+2π5x = \frac{8n\pi + 2\pi}{5} and x=2mπx = 2m\pi

    Thus, general solution is (8n+2)π(8n + 2)\pi

  118. Given equation is 2(sinxcos2x)sin2x(1+2sinx)+2cosx=02(\sin x -\cos2x) - \sin2x(1 + 2\sin x) + 2\cos x = 0

    2sinxsin2x2cos2x2sinxsin2x+2cosx=0\Rightarrow 2\sin x -\sin2x - 2\cos2x -2\sin x\sin2x + 2\cos x = 0

    2sinxsin2x2cos2x(cosxcos3x)+2cosx=0\Rightarrow 2\sin x -\sin2x - 2\cos2x - (\cos x - \cos3x) + 2\cos x = 0

    2sinx(1cosx)+4cos3x3cosx+cosx2(2cos2x1)=0\Rightarrow 2\sin x(1 - \cos x) + 4\cos^3x - 3\cos x + \cos x - 2(2\cos^2x - 1) = 0

    2sinx(1cosx)4cos2x(1cosx)+2(1cosx)=0\Rightarrow 2\sin x(1 - \cos x) -4\cos^2x(1 - \cos x) + 2(1 - \cos x) = 0

    (1cosx)[2sinx4(1sin2x)+2]=0\Rightarrow (1 - \cos x)[2\sin x - 4(1 - \sin^2x) + 2] =0

    cosx=1\Rightarrow \cos x = 1 or sinx2(1sin2x)+1=0\sin x - 2(1 -\sin^2x) + 1 = 0

    x=2nπx = 2n\pi or (2sinx1)(sinx+1)=0(2\sin x - 1)(\sin x+ 1) = 0

    x=2nπx = 2n\pi or sinx=12\sin x = \frac{1}{2} or sinx=1\sin x = -1

    x=2nπ,nπ+(1)nπ6,nπ(1)nπ2x = 2n\pi, n\pi + (-1)^n\frac{\pi}{6}, n\pi - (-1)^n\frac{\pi}{2}

  119. Given equation is sin2xsin2x+π3=0\frac{\sin2x}{\sin\frac{2x + \pi}{3}} = 0

    This is true if sin2x=0\sin2x = 0 and sin2x+π30\sin\frac{2x + \pi}{3}\neq 0

    2x=nπ2x = n\pi and 2x+π3=mπ\frac{2x + \pi}{3} = m\pi

    x=nπ/2x = n\pi/2 and x=(3m1)π/2nπ/2n3m1x = (3m - 1)\pi/2 \neq n\pi/2 \Rightarrow n \neq 3m - 1

  120. Given equation is 3tan2x4tan3x=tan23xtan2x3\tan2x - 4\tan3x = \tan^23x\tan2x

    3tan2x3tan3x=tan3x+tan23xtan2x\Rightarrow 3\tan2x - 3\tan3x = \tan3x + \tan^23x\tan2x

    3(tan2xtan3x)=tan3x(1+tan3xtan2x)\Rightarrow 3(\tan2x - \tan3x) = \tan3x(1 + \tan3x\tan2x)

    3tan(2x3x)=tan3xtan3x+3tanx=0\Rightarrow -3\tan(2x - 3x) = \tan 3x \Rightarrow \tan3x + 3\tan x = 0

    Let tanx=t,\tan x = t, then 3t+3tt313t2=03t + \frac{3t - t^3}{1 - 3t^2} = 0

    6t10t3=0\Rightarrow 6t - 10t^3 = 0

    t=0t = 0 or t=±3/5t = \pm\sqrt{3/5}

    x=nπx = n\pi or x=nπ±tan13/5x = n\pi \pm \tan^{-1}\sqrt{3/5}

  121. Given equation is 1+sin2x=2cos2x\sqrt{1 + \sin2x} = \sqrt{2}\cos2x

    sin2x+cos2x+2sinxcosx=2cos2x\Rightarrow \sqrt{\sin^2x + \cos^2x + 2\sin x\cos x} = \sqrt{2}\cos2x

    sinx+cosx=2cos2x\Rightarrow \sin x + \cos x = \sqrt{2}\cos2x

    sinx2+cosx2=cos2x\Rightarrow \frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}} = \cos2x

    cos(xπ4)=cos2x\Rightarrow \cos\left(x - \frac{\pi}{4}\right) = \cos 2x

    xπ4=2nπ±2x\Rightarrow x - \frac{\pi}{4} = 2n\pi \pm 2x

    Now it is trivial to find xx

  122. Given equation is 1+sin2ax=cosx1 + \sin^2ax = \cos x

    This is only possible if sin2ax=0\sin^2ax = 0 and cosx=1\cos x = 1 simultaneously.

    Thus, x=0x = 0 is the only solution because aa is irrational.

  123. For non-trivial solutions

    sin3θ11cos2θ43277=0\begin{vmatrix}\sin3\theta & -1 & 1\\\cos2\theta & 4 & 3\\2 & 7 & 7\end{vmatrix} = 0

    Applying C2C2+C3C_2\Rightarrow C_2 + C_3

    sin3θ01cos2θ732147=0\Rightarrow \begin{vmatrix}\sin3\theta & 0 & 1\\\cos2\theta & 7 & 3\\2 & 14 & 7\end{vmatrix} = 0

    7sin3θ+14cos2θ14=0\Rightarrow 7\sin3\theta + 14\cos2\theta - 14 = 0

    3sinθ4sin3θ+24sin2θ+2=0\Rightarrow 3\sin\theta - 4\sin^3\theta + 2 - 4\sin^2\theta + 2 = 0

    sinθ(4sin2θ+4sinθ3)=0\Rightarrow \sin\theta(4\sin^2\theta + 4\sin\theta - 3) = 0

    sinθ(2sinθ+3)(2sinθ1)=0\Rightarrow \sin\theta(2\sin\theta + 3)(2\sin\theta - 1) = 0

    2sinθ+302\sin\theta + 3 \neq 0

    sinθ=0,2sinθ1=0\therefore \sin\theta = 0, 2\sin\theta - 1 = 0

    θ=nπ,nπ+(1)nπ6\Rightarrow \theta = n\pi, n\pi + (-1)^n\frac{\pi}{6}

  124. Given equation is sinx+sinπ8(1cosx)2+sin2x=0\sin x + \sin\frac{\pi}{8}\sqrt{(1 - \cos x)^2 + \sin^2x} = 0

    sinx+sinπ812cosx+cos2x+sin2x=0\Rightarrow \sin x + \sin\frac{\pi}{8}\sqrt{1 - 2\cos x + \cos^2x + \sin^2x} = 0

    sinx+sinπ822cosx=0\Rightarrow \sin x + \sin\frac{\pi}{8}\sqrt{2 - 2\cos x} = 0

    2sinx2cosx2+sinπ82sinx2=0\Rightarrow 2\sin\frac{x}{2}\cos\frac{x}{2} + \sin\frac{\pi}{8}2\sin\frac{x}{2} = 0

    2sinx2(cosx2+sinπ8)=0\Rightarrow 2\sin\frac{x}{2}\left(\cos\frac{x}{2} + \sin\frac{\pi}{8}\right) = 0

    If sinx2=0x=2nπ\sin\frac{x}{2} = 0 \Rightarrow x = 2n\pi and cosx2=sinπ8=sin9π8\cos\frac{x}{2} = -\sin\frac{\pi}{8} = \sin\frac{9\pi}{8}

    x=2nπx = 2n\pi is not valid for given range. x2=2nπ±5π8\therefore \frac{x}{2} = 2n\pi\pm\frac{5\pi}{8}

    In the given range x=11π4x = \frac{11\pi}{4} is the only solution.

  125. tanxtan2x>0tanx>0,tanx<1\tan x - \tan^2x > 0 \Rightarrow \tan x > 0, \tan x < 1 x(0,π4)x \in \left(0, \frac{\pi}{4}\right)

    sinx<1212<sinx<12|\sin x|< \frac{1}{2} \Rightarrow -\frac{1}{2}< \sin x < \frac{1}{2}

    x(0,π6)x\in \left(0, \frac{\pi}{6}\right) and x(π,7π6)x\in \left(\pi, \frac{7\pi}{6}\right)

    Clearly, AB=x(0,π6)x(π,7π6)A\cap B = x\in \left(0, \frac{\pi}{6}\right) \cup x\in \left(\pi, \frac{7\pi}{6}\right)

  126. Given equation is 21sin2xy22y+222^{\frac{1}{\sin^2x}}\sqrt{y^2 - 2y + 2}\leq 2

    y22y+2=(y1)2+11\sqrt{y^2 - 2y + 2} = \sqrt{(y - 1)^2 + 1} \geq 1

    Thus, 21sin2xleq22^{\frac{1}{\sin^2x}} leq 2 for equality to be satisfied.

    If sinx<1|\sin x| < 1 then equality will not hold true.

    sinx=1x=π2,3π2\therefore |\sin x| = 1 \Rightarrow x = \frac{\pi}{2}, \frac{3\pi}{2}

    And thus y1=0y=1y - 1 = 0 \Rightarrow y = 1

  127. Given tanx=tanx+1cosx|\tan x| = \tan x + \frac{1}{\cos x}

    If tanx=tanx+1cosxsecx=0\tan x = \tan x + \frac{1}{\cos x} \Rightarrow \sec x = 0 which is not possible.

    tanx=tanx+1cosxsinx=12\therefore -\tan x = \tan x + \frac{1}{\cos x} \Rightarrow \sin x = -\frac{1}{2}

    x=7π6,11π6\therefore x = \frac{7\pi}{6}, \frac{11\pi}{6} in the given interval.

  128. Given equation is logcosxsinx+logsinxcosx=2\log_{\cos x}\sin x + \log_{\sin x}\cos x = 2

    Let y=logcosxsinx,y = \log_{\cos x}\sin x, then

    y+1y=2(y1)2=0y=1y + \frac{1}{y} = 2 \Rightarrow (y - 1)^2 = 0 \Rightarrow y = 1

    sinx=cosxx=π4\Rightarrow \sin x = \cos x \Rightarrow x = \frac{\pi}{4}

  129. Given equation is sinxcosx+12tanx1\sin x\cos x + \frac{1}{2}\tan x\geq 1

    sin2x2+tanx21\Rightarrow \frac{\sin 2x}{2} + \frac{\tan x}{2}\geq 1

    2tanx1+tan2x+tanx2\Rightarrow \frac{2\tan x}{1 + \tan^2x} + \tan x \geq 2

    (tanx1)(tan2xtanx+2)0\Rightarrow (\tan x - 1)(\tan^2x - \tan x + 2)\geq 0

    tan2xtanx+20  x\tan^2x - \tan x + 2\geq 0~\forall~x

    tanx1\Rightarrow \tan x \geq 1

    x(nπ+π/4,nπ+π2)x\in\left(n\pi + \pi/4, n\pi + \pi2\right)

  130. Given equation is tanxcos2x=cotxsinx\tan x^{\cos^2 x} = \cot x^{\sin x}

    (sinx)cos2x+sinx=(cosx)cos2x+sinx\Rightarrow (\sin x)^{\cos^2x + \sin x} = (\cos x)^{\cos^2x + \sin x}

    Case I: sinx=cosxx=nπ+π4\sin x = \cos x\Rightarrow x = n\pi +\frac{\pi}{4}

    Case II: cos2x+sinx=0sin2xsinx1=0\cos^2x + \sin x = 0 \Rightarrow \sin^2x - \sin x - 1 = 0

    sinx=1±52\sin x = \frac{1\pm\sqrt{5}}{2} but 1+52>1\frac{1 + \sqrt{5}}{2} > 1 so it is rejected.

    sinx=152=siny\Rightarrow \sin x = \frac{1 - \sqrt{5}}{2} = \sin y (say)

    x=nπ+(1)nyx = n\pi + (-1)^ny

  131. Given equation is x2+4+3cos(αx+β)=2xx^2 + 4 + 3\cos(\alpha x + \beta) = 2x

    3cos(αx+β)=33(x1)2\Rightarrow 3\cos(\alpha x + \beta) = -3 - 3(x - 1)^2

    For this to have a real solution x=1x = 1

    cos(α+β)=π,3π\Rightarrow \cos(\alpha + \beta) = \pi, 3\pi

  132. Slope of y=x+a=1,1y = |x| + a = 1, -1

    y=2sinxdydx=2cosx=1y = 2\sin x \Rightarrow \frac{dy}{dx} = 2\cos x = 1

    x=π3x = \frac{\pi}{3}

    So if a+π3>2sinπ3a + \frac{\pi}{3} > 2\sin\frac{\pi}{3} then it will have no solution.

    a>33π3a > \frac{3\sqrt{3} - \pi}{3}