Given equation is sinθ=−1
⇒sinθ=sin(−2π)
⇒θ=nπ+(−1)n(−2π)
θ=nπ+(−1)n+12π where n∈I.
Given equation is cosθ=−21
cosθ=cos32π⇒θ=2nπ±32π where n∈I.
Given equation is tanθ=−3
⇒tanθ=tan(−3π)⇒θ=nπ+(−3π)
=nπ−3π where n∈I.
Given equation is secθ=−2
⇒secθ=sec43π⇒θ=2nπ±43π where x∈I
Given equation is sin8θ=sinθ⇒sin9θ−sinθ=0
⇒2cos5θ.sin4θ=0
Either cos5θ=0 or sin4θ=0
⇒5θ=(2n+1)2π or 4θ=nπ
θ=4nπ,(2n+1)10π where n∈I.
Given equation is sin5x=cos2x
⇒cos2x=cos(2π−5x)
2x=2nπ±(2π−5x)
x=(4n+1)14π,−(4n−1)6π where n∈I
Given equation is sin3x=sinx⇒sin3x−sinx=0
⇒cos2x.sinx=0
Either cos2x=0 or sinx=0
⇒2x=(2n+1)2π or x=nπ
x=nπ,(2n+1)4π where n∈I
Given equation is sin3x=cos2x⇒cos2x=cos(2π−3x)
⇒2x=2nπ±(2π−3x)
x=52nπ+10π,−2nπ+2π
Given equation is sinax+cosbx=0
⇒sinax+sin(2π−bx)=0
⇒2sin(4π+2(a−b)x)cos(2(a+b)x−4π)=0
Either ⇒sin(4π+2(a−b)x)=0 or cos(2(a+b)x−4π)=0
⇒4π+2(a−b)x=nπ or 2(a+b)x−4π=(2n+1)2π
x=a−b2nπ−2π,a+b(2n+1)π+2π
Given tanxtan4x=1⇒sinxsin4x=cosxcos4x
⇒cosxcos4x−sinxsin4x=0
cos5x=0⇒5x=(2n+1)2π⇒x=10(2n+1)π
Given equation is cosθ=sin105∘+cos105∘
sin105∘=sin(60∘+45∘)=223+1
cos105∘=cos(60∘+45∘)=221−3
⇒cosθ=21⇒θ=2nπ±4π
Given equation is 7cos2θ+3sin2θ=4
⇒4cos2θ+3=4⇒cosθ=±21
If cosθ=21⇒θ=2nπ±3π
If cosθ=−21⇒θ=2nπ±32π
Given equation is 3tan(θ−15∘)=tan(θ+15∘)
⇒tan(θ−15∘)tan(θ+15∘)=13
Applying componendo and dividendo
⇒tan(θ+15∘)−tan(θ−15∘)tan(θ+15∘)+tan(θ−15∘)=24
⇒sin(θ+15∘−θ+15∘)sin(θ+15∘+θ−15∘)=2
⇒sin2θ=2⇒2θ=nπ+(−1)n2π⇒θ=2nπ+(−1)n4π
Given equation is tanx+cotx=2⇒tan2x−2tanx+1=0
⇒(tanx−1)2=0⇒tanx=1⇒x=nπ+4π
Given equation is sin2θ=sin2α⇒sinθ=±sinα
θ=nπ±α
Given equation is tan2x+cot2x=2
⇒tan4x−2tan2x+1=0⇒(tan2x−1)2=0
tanx=±⇒x=nπ±4π
Given equation is tan2x=3cosec2x−1
⇒tan2x=2+3cot2x⇒tan4x−2tan2x−3=0
⇒(tan2x+1)(tan2x−3)=0
If tan2x+1=0 then x will become imaginary.
∴tanx=±3⇒x=nπ±3π
Given equation is 2sin2x+sin22x=2
⇒2sin2x+4sin2xcos2x=2⇒sin2x+2sin2x(1−sin2x)=1
⇒(2sin2x−1)(sin2x−1)=0
⇒sinx=±21 or sinx=±1
⇒x=nπ±4π,(2n+1)2π
Given equation is 7cos2x+3sin2x=4
⇒4cos2x+3=4⇒cosx=±21
If cosx=21⇒x=2nπ±3π
If cosx=−21⇒x=2nπ±32π
Given equation is 2cos2x+2sinx=2
⇒2sinx=2(1−cos2x)=4sin2x
⇒2sinx(1−22sin23x)=0
Either:math:sin x = 0 Rightarrow x = npi where n∈I
or sin23x=221⇒sinx=21
⇒x=nπ+(−1)n6π
We know that tan22x=1+cosx1−cosx
∴8(1+cosx1−cosx)=1+secx=cosx1+cosx
⇒8cosx−8cos2x=(1+cosx)2
⇒9cos2x−6cosx+1=0⇒(3cosx−1)2=0
cosx=31⇒x=2nπ±cos−131 where ninI.
Check 2x=(2n+1)2π and cosx==0 else equation will be meaningless.
⇒x=(2n+1)π and x=(2n+1)2π
Given equation is cosxcos2xcos3x=41
⇒(2cosxcos3x)2cos2x=1⇒2cos4xcos2x+2cos22x−1=0
⇒cos4x[2cos2x+1]=0
If cos4x=0⇒x=(2n+1)8π
If 2cos2x+1=0⇒2x=2nπ±32π
x=nπ±3π
Given equation is tanx+tan2x+tan3x=0
⇒tanx+tan2x+1−tanxtan2xtanx+tan2x=0
⇒(tanx+tan2x)(1+1−tanxtan2x1)=0
If tanx+tan2x=0⇒tanx=−tan2x⇒x=nπ−2x⇒x=3nπ
If 1+1−tanxtan2x1=0 then tanxtan2x=2
1−tan2xtan2x=1⇒tanx=±21
x=nπ±tan−121
Given equation is cotx−tanx−cosx+sinx=0
⇒cosxsinxcos2x−sin2x−(cosx−sinx)=0
⇒(cosx−sinx)(cosxsinxcosx+sinx−1)=0
If cosx−sinx=0⇒tanx=1⇒x=nπ+4π
If cosxsinxcosx+sinx−1=0
⇒cosx+sinx=cosxsinx
Squaring, we get 1+sin2x=41sin2x
⇒sin2x=2±22
However, 2+22>1 which is not possible.
⇒sin2x=2−22=sinα (let)
x=2nπ+2(−1)nα
Given equation is 2sin2x−5sinxcosx−8cos2x=−2
Clearly, cosx=0 else sin2x=−1 which is not possible.
Therefore, we can divide both sides by cos2x which yields
2tan2x−5tanx−8=−2sec2x
⇒4tan2x−5tanx−6=0
⇒(tanx−2)(4tanx+3)=0
Thus, x=nπ+tan−12,bπ+tan−1(4−3)
Given equation is (1−tanx)(1+sin2x)=1+tanx
⇒(1−tanx)(1+1+tan2x2tanx)=1+tanx
⇒(1−tanx)(1+tanx)2=(1+tanx)(1+tan2x)
⇒(1+tanx)[(1−tanx)(1+tanx)−(1+tan2x)]=0
⇒(1+tanx)(−2tan2x)=0
If tan2x=0⇒tanx=0⇒x=nπ
If 1+tanx=0⇒x=nπ−4π
where n∈I
Given equation is 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx
⇒4cos23xcos2x+2sin25xcos2x−2sin2xcos2x=0
⇒2cos2x[2cos23x+sin25x−sin2x]=0
⇒2cos2x[2cos23x+2cos23xsinx]=0
⇒4cos2xcos23x[1+sinx]=0
If cos2x=0⇒x=(2n+1)π
If cos23x=0⇒x=(2n+1)3π
If 1+sinx=0⇒x=nπ+(−1)n+12π
So the values in the given range are x=−π,−2π,−3π,3π,π
Given equation is 4cos2xsinx−2sin2x=3sinx
⇒sinx[4cos2x−2sinx−3]=0
⇒sinx[4−4sin2x−2sinx−3]=0
⇒sinx[4sin2x+2sinx−1]=0
If sinx=0⇒x=nπ
If 4sin2x+2sinx−1=0
sinx=4−1±5
If sinx=4−1+5⇒sinx=sin10π⇒x=nπ+(−1)n10π
If sinx=4−1−5⇒sinx=−sin54∘=sin(10−3π)
⇒x=nπ+(−1)n+1103π
Given equation is 2+7tan2x=3.25sec2x
⇒8+28tan2x=13sec2x=13+13tan2x
⇒15tan2x=5⇒tanx=±31
⇒x=nπ±6π
Given equation is cos2x+cos4x=2cosx
⇒cos4x+cos2x−2cosx=0
⇒2cos3xcosx−cosx=0
2cosx[cos3x−1]=0
If cosx=0⇒x=(2n+1)2π
If cos3x−1=0⇒3x=2nπ⇒x=32nπ
Given equation is 3tanx+cotx=5cosecx
⇒cosx3sinx+sinxcosx=sinx5
⇒sinx(3sin2x+cos2x)=5sinxcosx
⇒sinx(2sin2x−5cosx+1)=0
⇒sinx(2cos2x+5cosx−3)=0
⇒sinx(2cosx+3)(2cosx−1)=0
sinx=0 because that will make cosecx and cotx∞.
2cosx+3=0 because −1≤cosx≤1
∴2cosx−1=0⇒cosx=21⇒x=2nπ±3π
Given equation is 2sin2x=3cosx
⇒2cos2x+3cosx−2=0
⇒(2cosx−1)(cosx+2)=0
cosx=2∵−1≤cosx≤1
∴2cosx−1=0⇒x=2nπ±3π ∀ n∈I
0≤x≤2π∴x=3π,35π
Given equation is sin2x−cosx=41
⇒4sin2x−4cosx=1⇒4−4cos2x−4cosx=1
⇒4cos2x+4cosx−3=0
⇒(2cosx+3)(2cosx−1)=0
cosx=2∵−1≤cosx≤1
∴2cosx−1=0⇒x=2nπ±3π ∀ n∈I
0≤x≤2π∴x=3π,35π
Given equation is 3tan2x−2sinx=0
⇒3sin2x−2sinxcos2x=0
⇒3sin2x−2sinx+2sin3x=0
⇒sinx(2sin2x+3sinx−2)=0
⇒sinx(sinx+2)(2sinx−1)=0
sinx=−2∵−1≤sinx≤1
If sinx=0⇒x=nπ
If 2sinx−1=0⇒x=nπ+(−1)n6π
Given equation is sinx+sin5x=sin3x
⇒sin5x−sin3x+sinx=0
⇒2cos4xsinx+sinx=0
sinx(2cos4x+1)=0
If sinx=0⇒x=nπ ∀ x∈I
If 2cos4x+1=0⇒4x=2nπ±32π
x=2nπ±6π ∀ x∈I
Thus, x=0,π and x=6π,3π,32π,65π
Given equation is sin6x=sin4x−sin2x
⇒sin6x+sin2x−sin4x=0
⇒2sin4xcos2x−sin4x=0
⇒sin4x(2cos2x−1)=0
If sin4x=0⇒x=4nπ
If 2cos2x−1=0⇒cos2x=21⇒2x=2nπ±3π
⇒x=nπ±6π
Given equation is cos6x+cos4x+cos2x+1=0
⇒2cos5xcosx+2cos2x=0
⇒2cosx(cos5x+cosx)=0
⇒4cosxcos2xcos3x=0
If cosx=0⇒x=2nπ±2π
If cos2x=0⇒x=nπ±4π
If cos3x=0⇒x=32nπ±6π
Given equation is cosx+cos2x+cos3x=0
⇒(cosx+cos3x)+cos2x=0
⇒2cos2xcosx+cos2x=0
⇒cos2x(2cosx+1)=0
If cos2x=0⇒x=(2n+1)4π
If 2cosx+1=0⇒x=2nπ±32π
Given equation is cos3x+cos2x=sin23x+sin2x
⇒2cos25xcos2x−2sinxcos2x=0
⇒2cos2x[cos25x−sinx]=0
If cos2x=0⇒2x=(n+21)π
x=(2n+1)π
If cos25x=sinx=cos(2π−x)
⇒25x=2nπ±(2π−x)
⇒x=(4n+1)π/7,(4n−1)π/3
Thus, between 0 and 2π the values of x are 7π,75π,π,79π,713π.
Given equation is tanx+tan2x+tan3x=tanx.tan2x.tan3x
⇒tanx+tan2x=tan3x(tanxtan2x−1)
⇒1−tanxtan2xtanx+tan2x=−tan3x
⇒tan(x+2x)=−tan3x⇒2tan3x=0
⇒3x=nπ⇒x=3nπ
Given equation is tanx+tan2x+tanxtan2x=1
⇒tanx+tan2x=1−tanxtan2x
⇒1−tanxtan2xtanx+tan2x=1
⇒tan3x=tan4π
3x=nπ+4π⇒x=(4n+1)12π
Given equation is sin2x+cos2x+sinx+cosx+1=0
⇒2sinxcosx+2cos2x−1+sinx+cosx+1=0
⇒sinx(2cosx+1)+cosx(2cosx+1)=0
⇒(2cosx+1)(sinx+cosx)=0
If cosx=−21⇒x=2nπ±32π
If sinx+cosx=0⇒tanx=−1⇒x=nπ−4π
We have to prove that sinx+sin2x+sin3x=cosx+cos2x+cos3x
⇒(sinx+sin3x)+sin2x=(cosx+cos3x)+cos2x
⇒2sin2xcosx+sin2x=2cos2xcosx+cos2x
⇒sin2x(2cosx+1)=cos2x(2cosx+1)
⇒(2cosx+1)(sin2x−cos2x)=0
If 2cosx+1=0⇒x=2nπ±32π
If sin2x−cos2x=0⇒tan2x=1=tan4π⇒x=2nπ+8π
Given equation is cos6x+cos4x=sin3x+sinx
⇒2cos5xcosx=2sin2xcosx
⇒cosx(cos5x−sin2x)=0
If x=0⇒x=2nπ±2π
If cos5x=sin2x⇒cos5x=cos(2π−2x)
⇒5x=2nπ±(2π−2x)
Taking +ve sign 7x=2nπ+2π⇒x=(4n+1)14π
Taling -ve sign 3x=2nπ−2π⇒x=(4n−1)6π
Given equation is sec4x−sec2x=2
⇒cos2x−cos4x=2cos2xcos4x where cos2x,cos4x=0
⇒cos2x−cos4x=cos6x+cos2x
⇒cos6x+cos4x=0⇒2cos5xcosx=0
If cos5x=0⇒5x=2nπ±2π⇒x=52nπ±10π
If cosx=0⇒x=2nπ±2π
Given equation is cos2x=(2+1)(cosx−21)
⇒(2cos2x−1)=22+1(2cosx−1)
⇒(2cosx−1)(2cosx+1−1−21)=0
⇒(2cosx−1)(2cosx−1)=0
If 2cosx−1=0⇒x=2nπ±4π
If 2cosx−1=0⇒x=2nπ±3π
Given equation is 5cos2x+2cos22x+1=0
⇒10cos2x−5+cosx+2=0[∵cos2x=2cos2x−1]
⇒10cos2x+cosx−3=0
⇒(2cosx−1)(5cosx+3)=0
If cosx=1/2⇒x=3π[∵−π≤x≤π]
If 5cosx+3=0⇒x=π−cos−153
Given equation is cotx−tanx=secx
⇒cosx(cos2x−sin2x)=sinxcosx
⇒cosx(2sin2x+sinx−1)=0
⇒cosx(2sinx−1)(sinx+1)=0
cosx=0 and sin=−1 because that will render original equation meaningless.
∴2sinx−1=0⇒x=nπ+(−1)n6π
Given equation is 1+secx=cot22x
⇒cosx1+cosx=sin22xcos22x
⇒2sin22xcos22x=cosxcos22x
⇒cos22x(2sin22x−cosx)=0
⇒cos22x(1−2cosx)=0
If cos2x=0⇒2x=nπ+2pi⇒x=(2n+1)π
If 1−2cosx=0⇒x=2nπ±3π
Given equation is cos3xcos3x+sin3xsin3x=0
⇒(4cos3x−3cosx)cos3x+(3sinx−4sin3x)sin3x=0
⇒3(sin4x−cos4x)−4(sin6x−cos6x)=0
⇒3(sin2x−cos2x)−4(sin2x−cos2x)(sin4x+cos4x+sin2xcos2x)=0
⇒cos2x[−3+4{sin2x(sin2x+cos2x)+cos4x}]=0
⇒cos2x[4cos4x−4cos2x+1]=0
⇒cos2x(2cos2x−1)2=0
⇒cos32x=0
⇒cos2x=0
2x=nπ+2π⇒x=(2n+1)4π
Given equation is sin3x+sinxcosx+cos3x=1
⇒sin3x+cos3x+sinxcosx−1=0
⇒(sinx+cosx)(sin2x−sinxcosx+cos2x)+(sinxcosx−1)=0
⇒(1−sinxcosx)(sinx+cosx−1)=0
If 1−sinxcosx=0⇒sin2x=2 which is not possible.
∴sinx+cosx−1=0⇒21sinx+21cosx=21
⇒cos(x−4π)=cos4π
⇒x−π/4=2nπ±π/4=2nπ,2nπ+π/2
Given equation is sin7x+sin4x+sinx=0
⇒2sin4xcos3x+sin4x=0
⇒sin4x(2cos3x+1)=0
If sin4x=0⇒x=nπ/4⇒x=π/4 ∀0≤x≤π/2
If cos3x=−1/2⇒x=92π,94π ∀0≤x≤π/2
Given equation is sinx+3cosx=2
Dividing both sides by 2 [we arrive at this no. by squaring and adding coefficients of sinx and cosx
and then taking square root]
⇒21sinx+23cosx=21
⇒sin6πsinx+cos6πcosx=cos4π
⇒cos(x−6π)=cos4π
⇒x−6π=2nπ±4π
⇒x=2nπ±125π,2nπ−12π
We have to find minimum value of 27