6. Trigonometrical Ratios of Angle and Sign#

6.1. Values of Trigonometrical Ratios for Some Useful Angles#

6.1.1. Angle of 4545^\circ#

45 degree angle

Consider the above figure, which is a right-angle triangle, drawn so that OMP=90\angle OMP = 90^\circ and MOP=45.\angle MOP = 45^\circ. We know that sum of all angles of a triangle is equal to 180.180^\circ. Thus,

OPM=180MOPOMP=1809045=45\angle OPM = 180^\circ - \angle MOP - \angle OMP = 180^\circ - 90^\circ - 45^\circ = 45^\circ

OM=MP.\therefore OM = MP. Let OP=2a,OP = 2a, then from Pythogoras theorem, we can write

4a2=OP2=OM2+MP2=2.OM2OM=a2=MP4a^2 = OP^2 = OM^2 + MP^2 = 2.OM^2\Rightarrow OM = a\sqrt{2} = MP

sin45=MPOP=a22a=12\sin 45^\circ = \frac{MP}{OP} = \frac{a\sqrt{2}}{2a} = \frac{1}{\sqrt{2}}

Other trigonometric ratios can be deduced easily from this.

6.1.2. Angle of 3030^\circ and 5050^\circ#

30 degree angle

Consider an equilateral OMP\triangle OMP. Let the sides OM,OP,MPOM, OP, MP be each 2a2a. We draw a bisector of MOP\angle MOP which will be a perpendicular bisector of MPMP at XX because the triangle is equilateral. Thus, MX=a.MX = a. Thus, in OMX,OM=2a,MX=a,MOX=30,OXM=90\triangle OMX, OM = 2a, MX = a, \angle MOX = 30^\circ, \angle OXM = 90^\circ because each angle is 6060^\circ in an equilateral triangle.

sinMOX=MXOM=12sin30=12\sin MOX = \frac{MX}{OM} = \frac{1}{2} \Rightarrow \sin 30^\circ = \frac{1}{2}

Similarly, OMX=60\angle OMX = 60^\circ because sum of all angles of a triangle is 180180^\circ

cosOMX=MXOM=12cos60=12\cos OMX = \frac{MX}{OM} = \frac{1}{2}\Rightarrow \cos 60^\circ = \frac{1}{2}

All other trigonometric ratios for these can be foun from these two.

6.1.3. Angle of 00^\circ#

0 degree angle

Consider the MOP\triangle MOP such that the side MP is smaller than any quantiry we can assign i.e. what we denote by 0. Thus, MOP\angle MOP is what is called approaching 00 or limx0\lim_{x \to 0} in terms of Calculus. Why we have to take such a value is because if any anngle of a triangle is equal to 00^\circ then the triagle won’t exist. Thus these values are limiting values as you will learn in Calculus.

However, in this case sin0=MPOP=0OP=0.\sin 0^\circ = \frac{MP}{OP} = \frac{0}{OP} = 0. Now other trigonometric ratios can be found with ease.

6.1.4. Angle of 9090^\circ#

In the previous figure as OMP\angle OMP will approach 0,0^\circ, the OPM\angle OPM will approach 90.90^\circ. Also, OPOP will approach the length of OM.OM. Similar to previos case in right-angle triangle if one angle(other than right angle) approaches 00^\circ the other one will approach 9090^\circ and at that value the triangle will cease to exist.

Thus, sin90=OMOP=OPOP=1.\sin 90^\circ = \frac{OM}{OP} = \frac{OP}{OP} = 1. Now it is trivial to find other trigonometric ratios.

Given below is a table of most useful angles:

Values of useful angles#

Angle

00^\circ

3030^\circ

4545^\circ

6060^\circ

9090^\circ

sin\sin

00

12\frac{1}{2}

12\frac{1}{\sqrt{2}}

32\frac{\sqrt{3}}{2}

11

cos\cos

11

32\frac{\sqrt{3}}{2}

12\frac{1}{\sqrt{2}}

12\frac{1}{\sqrt{2}}

00

tan\tan

00

13\frac{1}{\sqrt{3}}

11

3\sqrt{3}

\infty

cosec\cosec

\infty

22

2\sqrt{2}

23\frac{2}{\sqrt{3}}

11

sec\sec

11

23\frac{2}{\sqrt{3}}

2\sqrt{2}

22

\infty

cot\cot

\infty

3\sqrt{3}

11

13\frac{1}{\sqrt{3}}

00

6.2. Complementary Angles#

complementary angles

Angles are said to be complementary if their sum is equal to one right angle i.e 90.90^\circ. Thus, if measure of one angle is θ\theta the other will automatically be 90θ.90^\circ - \theta.

Consider the above figure. OMP\triangle OMP is a right-angle triangle whose OMP\angle OMP is a right angle. Since the sum of all angles is equal to 180,180^\circ, therefore sum of MOP\angle MOP and MPO\angle MPO will be equal to one right angle or 9090^\circ i.e. they are complementatry angles.

Let MOP=θ\angle MOP = \theta then MPO=90θ.\angle MPO = 90^\circ - \theta. When MPO\angle MPO is considered MPMP becomes the base and OMOM becomes the perpendicular.

Thus, sin(90θ)=sinMPO=MOPO=cosMOP=cosθ\sin(90^\circ - \theta) = \sin MPO = \frac{MO}{PO} = \cos MOP = \cos \theta

cos(90θ)=sinMPO=PMPM=sinMOP=sinθ\cos(90^\circ - \theta) = \sin MPO = \frac{PM}{PM} = \sin MOP = \sin \theta

tan(90θ)=tanMPO=OMMP=cotMOP=cotθ\tan(90^\circ - \theta) = \tan MPO = \frac{OM}{MP} = \cot MOP = \cot \theta

Similarly, cot(90θ)=tanθ\cot(90^\circ - \theta) = \tan \theta

cosec(90θ)=secθ\cosec(90^\circ - \theta) = \sec \theta

sec(90θ)=cosecθ\sec(90^\circ - \theta) = \cosec \theta

6.3. Supplementary Angles#

supplemntary angles

Angles are said to be supplementary if their sum is equal to two right angles i.e. 180.180^\circ. Thus, if measure of one angle is θ\theta and oher will automaticaly be 180θ.180^\circ - \theta.

Conside the above figure which include the angles of 180+θ.180^\circ + \theta. In each figure OMOM and OMOM' are drawn in different directions, while MPMP and MPM'P' are drawn in the same direction, so that

OM=OMOM' = -OM and MP=MPM'P' = MP

Hencem we can say that

sin(180θ)=sinMOP=MPOP=MPOP=sinθ\sin(180^\circ - \theta) = \sin MOP' = \frac{M'P'}{OP'} = \frac{MP}{OP} = \sin \theta

cos(180θ)=cosMOP=OMOP=OMOP=cosθ\cos(180^\circ - \theta) = \cos MOP' = \frac{OM'}{OP'} = \frac{-OM}{OP} = -\cos \theta

tan(180θ)=tanMOP=OMMP=OMMP=tanθ\tan(180^\circ - \theta) = \tan MOP' = \frac{OM'}{M'P'} = \frac{-OM}{MP} = -\tan \theta

Similarly, cot(180θ)=cotθ\cot(180^\circ - \theta) = -\cot \theta

sec(180θ)=secθ\sec(180^\circ - \theta) = -\sec \theta

cosec(180θ)=cosecθ\cosec(180^\circ - \theta) = \cosec \theta

6.4. Angles of θ-\theta#

negative angled

Consider the above diagram which plots angles of θ\theta and θ.-\theta. Note that MPMP and MPMP' are equal in magnitude but are opposite in sign. Thus, we have

sin(θ)=MPOP=MPOP=sinθ\sin(-\theta) = \frac{MP'}{OP'} = \frac{-MP}{OP} = -\sin\theta

cos(θ)=OMMP=OMOP=cosθ\cos(-\theta) = \frac{OM}{MP'} = \frac{OM}{OP} = \cos\theta

tan(θ)=MPOM=MPOM=tanθ\tan(-\theta) = \frac{MP'}{OM} = \frac{-MP}{OM} = -\tan\theta

Similalry, cot(θ)=cotθ\cot(-\theta) = -\cot\theta

sec(θ)=secθ\sec(-\theta) = \sec\theta

cosec(θ)=cosecθ\cosec(-\theta) = -\cosec\theta

6.5. Angles of 90θ90^\circ -\theta and 90+θ90^\circ+\theta#

Similarly it can be proven that(diagram has been left as an exercise)

sin(90θ)=cosθ\sin(90^\circ -\theta) = \cos\theta

cos(90θ)=sinθ\cos(90^\circ -\theta) = \sin\theta

tan(90θ)=cotθ\tan(90^\circ -\theta) = \cot\theta

cot(90θ)=tanθ\cot(90^\circ -\theta) = \tan\theta

sec(90θ)=cosecθ\sec(90^\circ -\theta) = \cosec\theta

cosec(90θ)=secθ\cosec(90^\circ -\theta) = \sec\theta

sin(90+θ)=cosθ\sin(90^\circ+\theta) = \cos\theta

cos(90+θ)=sinθ\cos(90^\circ+\theta) = -\sin\theta

tan(90+θ)=cotθ\tan(90^\circ+\theta) = -\cot\theta

cot(90+θ)=tanθ\cot(90^\circ+\theta) = -\tan\theta

sec(90+θ)=cosecθ\sec(90^\circ+\theta) = -\cosec\theta

cosec(90+θ)=secθ\cosec(90^\circ+\theta) = \sec\theta

6.6. Angles of 180+θ180^\circ + \theta#

Angles of 180+θ,270θ,270+theta180^\circ + \theta, 270^\circ -\theta, 270^\circ + theta can be found by using previous relations. For example,

sin(180+θ)=sin(90+90+θ)=cos(90+θ)=sinθ\sin(180 + \theta) = \sin(90 + 90 + \theta) = \cos(90 + \theta) = -\sin\theta

cos(180+θ)=cos(90+90+θ)=sin(90+θ)=cosθ\cos(180 + \theta) = \cos(90 + 90 + \theta) = -\sin(90 + \theta) = -\cos\theta

tan(180+θ)=tan(90+90+θ)=cos(90+θ)=tanθ\tan(180 + \theta) = \tan(90 + 90 + \theta) = -\cos(90 + \theta) = \tan\theta

Similarly, cot(180+θ)=cotθ\cot(180 + \theta) = \cot\theta

sec(180+θ)=secθ\sec(180 + \theta) = -\sec\theta

cosec(180+θ)=cosecθ\cosec(180 + \theta) = -\cosec\theta

6.7. Angles of 360+θ360^\circ + \theta#

For angles of θ\theta the radius vector makes an angle of θ\theta with initial side. For angles of 360+θ360^\circ + \theta it will complete a full revolution and then make an angle of θ\theta with initial side. Thus, the trigonometrical ratios for an angle of 360+θ360^\circ + \theta are the same as those for θ.\theta.

It is clear that angle will remain θ\theta for any multiple of 360.360^\circ.

6.8. Problems#

  1. If A=30,A = 30^\circ, verify that

    1. cos2A=cos2Asin2A=2cos2A1\cos 2A = \cos^2A - \sin^2A = 2\cos^2A - 1

    2. sin2A=2sinAcosA\sin 2A = 2\sin A\cos A

    3. cos3A=4cos3A3cosA\cos 3A = 4\cos^3A - 3\cos A

    4. sin3A=3sinA4sin3A\sin 3A = 3\sin A - 4\sin^3A

    5. tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2 A}

  2. If A=45,A = 45^\circ, verify that

    1. sin2A=2sinAcosA\sin 2A = 2\sin A\cos A

    2. cos2A=12sin2A\cos 2A = 1 - 2\sin^2A

    3. tan2A=2tanA1tan2A\tan 2A = \frac{2\tan A}{1 - \tan^2A}

Verify that

  1. sin230+sin245+sin260=32\sin^230^\circ + \sin^245^\circ + \sin^260^\circ = \frac{3}{2}

  2. tan230+tan245+tan260=413\tan^230^\circ + \tan^245^\circ + \tan^260^\circ = 4\frac{1}{3}

  3. sin30cos60+sin60cos30=1\sin 30^\circ\cos 60^\circ + \sin 60^\circ\cos 30^\circ = 1

  4. cos45cos60sin45sin60=3122\cos 45^\circ\cos 60^\circ - \sin 45^\circ\sin 60^\circ = -\frac{\sqrt{3} - 1}{2\sqrt{2}}

  5. cosec245.sec230.sin290.cos60=113\cosec^245^\circ.\sec^230^\circ.\sin^290^\circ.\cos 60^\circ = 1\frac{1}{3}

  6. 4cot245sec260+sin230=144\cot^245^\circ-\sec^260^\circ + \sin^230^\circ = \frac{1}{4}

Prove that

  1. sin420cos390+cos(300)sin(330)=1\sin 420^\circ\cos 390^\circ + \cos(-300^\circ)\sin(-330^\circ) = 1

  2. cos570sin510sin330cos390=0\cos 570^\circ\sin 510^\circ -\sin 330^\circ\cos 390^\circ = 0

What are the values of cosAsinA\cos A - \sin A and tanA+cotA\tan A + \cot A when A has the values

  1. π3\frac{\pi}{3}

  2. 2π3\frac{2\pi}{3}

  3. 5π4\frac{5\pi}{4}

  4. 7π4\frac{7\pi}{4}

  5. 11π3\frac{11\pi}{3}

What values between 00^\circ and 360360^\circ may AA have when

  1. sinA=12\sin A = \frac{1}{\sqrt{2}}

  2. cosA=12\cos A = -\frac{1}{2}

  3. tanA=1\tan A = -1

  4. cotA=3\cot A = -\sqrt{3}

  5. secA=23\sec A = -\frac{2}{\sqrt{3}}

  6. cosecA=2\cosec A = -2

Express in terms of the ratios of a positive angle, which is less than 45,45^\circ, the quantities

  1. sin(65)\sin(-65^\circ)

  2. cos(84)\cos(-84^\circ)

  3. tan137\tan 137^\circ

  4. sin168\sin 168^\circ

  5. cos287\cos 287^\circ

  6. tan(246)\tan(-246^\circ)

  7. sin843\sin 843^\circ

  8. cos(928)\cos(-928^\circ)

  9. tan1145\tan 1145^\circ

  10. cos1410\cos 1410^\circ

  11. cot(1054)\cot(-1054^\circ)

  12. sec1327\sec 1327^\circ

  13. cosec(756)\cosec (-756^\circ)

What sign has sinA+cosA\sin A + \cos A for the following values of AA?

  1. 140140^\circ

  2. 278278^\circ

  3. 356-356^\circ

  4. 1125-1125^\circ

What sign has sinAcosA\sin A - \cos A for the following values of AA?

  1. 215215^\circ

  2. 825825^\circ

  3. 634-634^\circ

  4. 457-457^\circ

  5. Find the sine and cosine of all angles in the first four quadrants whose tangents are equal to cos135.\cos 135^\circ.

Prove that

  1. sin(270+A)=cosA\sin(270^\circ + A) = -\cos A and tan(270+A)=cotA\tan(270^\circ + A) = -\cot A

  2. cos(270A)=sinA\cos(270^\circ - A) = -\sin A and cot(270A)=tanA\cot(270^\circ - A) = \tan A

  3. cosA+sin(270+A)sin(270A)+cos(180+A)=0\cos A + \sin(270^\circ + A) - \sin(270^\circ - A) + \cos(180^\circ + A) = 0

  4. sec(270A)sec(90A)tan(270A)tan(90+A)+1=0\sec(270^\circ - A)\sec(90^\circ - A) - \tan(270^\circ - A)\tan(90^\circ + A) + 1 = 0

  5. cotA+tan(180+A)+tan(90+A)+tan(360A)=0\cot A + \tan(180^\circ + A) + \tan(90^\circ + A) + \tan(360^\circ - A) = 0

  6. Find the value of 3tan245sin26012cot230+18sec2453\tan^245^\circ - \sin^260^\circ - \frac{1}{2}\cot^230^\circ + \frac{1}{8}\sec^245^\circ

  7. Simplify sin300.tan330.sec420tan135.sin210.sec315\frac{\sin 300^\circ.\tan 330^\circ.\sec 420^\circ}{\tan 135^\circ.\sin 210^\circ.\sec 315^\circ}

  8. Show that tan1tan2tan89=1\tan 1^\circ\tan 2^\circ \ldots \tan 89^\circ = 1

  9. Show that sin25+sin210+sin215++sin290=912\sin^25^\circ + \sin^210^\circ + \sin^215^\circ + \ldots + \sin^290^\circ = 9\frac{1}{2}

  10. Find the value of cos2π16+cos23π16+cos25π16+cos27π16\cos^2\frac{\pi}{16} + \cos^2\frac{3\pi}{16} + \cos^2\frac{5\pi}{16} + \cos^2\frac{7\pi}{16}

Find the value of the following:

  1. sec2π6sec2π4+tan2π3sin2π2\sec^2\frac{\pi}{6}\sec^2\frac{\pi}{4} + \tan^2\frac{\pi}{3}\sin^2\frac{\pi}{2}

  2. cot2302cos26034sin2454sin230\cot^230^\circ - 2\cos^260^\circ - \frac{3}{4}\sin^245^\circ - 4\sin^230^\circ

  3. sec480cosec570.tan330sin600.cos660.cot405\frac{\sec 480^\circ\cosec 570^\circ.\tan 330^\circ}{\sin 600^\circ.\cos 660^\circ.\cot 405^\circ}

  4. If A=30,A = 30^\circ, show that cos6A+sin6A=1sin2Acos2A\cos^6A + \sin^6A = 1 - \sin^2A\cos^2A

  5. Show that (tanπ4+cotπ4+secπ4)(tanπ4+cotπ4secπ4)=cosec2π4\left(\tan \frac{\pi}{4} + \cot \frac{\pi}{4} + \sec\frac{\pi}{4}\right)\left(\tan \frac{\pi}{4} + \cot \frac{\pi}{4} - \sec \frac{\pi}{4}\right) = \cosec^2 \frac{\pi}{4}

  6. Show that sin26+sin6212+sin218++sin284+sin290=8\sin^26^\circ + \sin6^212^\circ + \sin^218^\circ + \ldots + \sin^284^\circ + \sin^290^\circ = 8

  7. Show that tan9.tan27.tan45.tan63.tan81=1\tan 9^\circ.\tan 27^\circ.\tan 45^\circ.\tan 63^\circ.\tan 81^\circ = 1

  8. Show that r=19sin2rπ18=5\sum_{r = 1}^9 \sin^2\frac{r\pi}{18} = 5

  9. If 4nα=π,4n\alpha = \pi, show that tanαtan2αtan3α..tan(2n2)αtan(2n1)α=1\tan\alpha\tan2\alpha\tan3\alpha. \ldots .\tan(2n - 2)\alpha\tan(2n - 1)\alpha = 1