4. Trigonometrical Ratios#

From Geometry, we know that an acute angle is an angle whose measure is between 00^\circ and 9090^\circ. Consider the following figure:

trignometrical ratios

This picture contains two similar triangles OMP\triangle OMP and OMP.\triangle OM'P'. We are interested in MOP\angle MOP or MOP\angle M'OP'. In the MOP\triangle MOP and MOP,OP,OP\triangle M'OP', OP, OP' are called hypotenuses i.e sides opposite to right angle, PM,PMPM, P'M' are called perpendiculars i.e. sides opposite to angle of interest and OM,OMOM, OM' are called bases i.e the third angle.

Hypotenuses are usually denoted by h,h, perpendiculars by pp and bases by b.b. Let OM=b,OM=b,PM=b,PM=b,OP=h,OP=h.OM = b, OM' = b', PM = b, P'M'=b', OP= h, OP'=h'. Since the two triangles are similar pp=bb=hh\frac{p}{p'} = \frac{b}{b'} = \frac{h}{h'} Thus the ratio of any two sides is dependent purely on O\angle O or MOP\angle MOP or MOP\angle M'OP'

Since there are 33 sides we can choose 22 in 3C2{}^3C_2 i.e 33 ways and for each combination a there will be two permutations where a side can be in either numerator or denominator. From this we can conclude that there will be six ratios(these are called trigonometrical ratios). These six trigonometrical ratios or functions are given below:

MPOP\frac{MP}{OP} or perp.hyp.\frac{\text{perp.}}{\text{hyp.}} or ph\frac{p}{h} is called the Sine of the MOP\angle MOP

OMOP\frac{OM}{OP} or basehyp.\frac{\text{base}}{\text{hyp.}} or bh\frac{b}{h} is called the Cosine of the MOP\angle MOP

MPOM\frac{MP}{OM} or perp.base\frac{\text{perp.}}{\text{base}} or pb\frac{p}{b} is called the Tangent of the MOP\angle MOP

OMMP\frac{OM}{MP} or baseperp.\frac{\text{base}}{\text{perp.}} or bp\frac{b}{p} is called the Cotangent of the MOP\angle MOP

OPOM\frac{OP}{OM} or hyp.base\frac{\text{hyp.}}{\text{base}} or hb\frac{h}{b} is called the Secant of the MOP\angle MOP

OPMP\frac{OP}{MP} or xhyp.perp.\frac{x\text{hyp.}}{\text{perp.}} or hp\frac{h}{p} is called the Cosecant of the MOP\angle MOP

1cosMOP1 - \cos MOP is called Versed Sine of MOP\angle MOP and 1sinMOP1 - \sin MOP is called Coversed sine of MOP\angle MOP. These two are rarely used in trigonometry.

It should be noted that the trigonometrical ratios are all numbers.

The name of all trigonometric ration are wriiten for, for brevity, sinMOP,cosMOP,tanMOP,cotMOP,secMOP,cosecMOP,vers MOP,coverse MOP.\sin MOP, \cos MOP, \tan MOP, \cot MOP, \sec MOP, \cosec MOP, \text{vers~} MOP, \text{coverse~} MOP.

4.1. Relationship betweeen Trigonometrical Functions or Ratios#

Let us represent the MOP\angle MOP with θ,\theta, we observe from previous section that

sinθ=1cosecθ,cosθ=1secθ,tanθ=1cotθ\sin \theta = \frac{1}{\cosec\theta}, \cos\theta = \frac{1}{\sec\theta}, \tan\theta = \frac{1}{\cot\theta}

Also that cosecθ=1sinθ,secθ=1cosθ,cotθ=1tanθ\cosec\theta = \frac{1}{\sin\theta}, \sec\theta = \frac{1}{\cos\theta}, \cot\theta = \frac{1}{\tan\theta}

We also observe that tanθ=sinθcosθ\tan\theta = \frac{\sin\theta}{\cos\theta} and cotθ=cosθsinθ\cot\theta = \frac{\cos\theta}{\sin\theta}

Form Pythagoras theorem in Geometry, we know that hypotenuse2=perpendicular2+base2\text{hypotenuse}^2 = \text{perpendicular}^2 + \text{base}^2 or h2=p2+b2h^2 = p^2 + b^2

  1. Dividing both sides by h2,h^2, we get

    p2h2+b2h2=1\frac{p^2}{h^2} + \frac{b^2}{h^2} = 1

    sin2θ+cos2θ=1\sin^2 \theta + \cos^2\theta = 1

    We can rewrite this as sin2θ=1cos2θ,cos2θ=1sin2θ,sinθ=1cos2θ,cosθ=1sin2θ\sin^2\theta = 1 - \cos^2\theta, \cos^2\theta = 1 - \sin^2\theta, \sin\theta = \sqrt{1 - \cos^2\theta}, \cos\theta = \sqrt{1 - \sin^2\theta}

  2. Divising both sides by b2,b^2, we get

    h2b2=p2b2+1\frac{h^2}{b^2} = \frac{p^2}{b^2} + 1

    sec2θ=tan2θ+1\sec^2\theta = \tan^2\theta + 1

    We can rewrite this as sec2θtan2θ=1,tan2θ=sec2θ1,secθ=1+tan2θ,tanθ=sec2θ1\sec^2\theta - \tan^2\theta = 1, \tan^2\theta = \sec^2\theta - 1, \sec\theta = \sqrt{1 + \tan^2\theta}, \tan\theta = \sqrt{\sec^2\theta - 1}

  3. Divising both sides by p2,p^2, we get

    h2p2=1+b2p2\frac{h^2}{p^2} = 1 + \frac{b^2}{p^2}

    cosec2θ=1+cot2θ\cosec^2\theta = 1 + \cot^2\theta

    We can rewrite this as cosec2θcot2θ=1,cot2θ=cosec2θ1,cosecθ=1+cot2θ,cotθ=cosec2θ1\cosec^2\theta - \cot^2\theta = 1, \cot^2\theta = \cosec^2\theta - 1, \cosec\theta = \sqrt{1 + \cot^2\theta}, \cot\theta = \sqrt{\cosec^2\theta - 1}

4.2. Problems#

Prove the following:

  1. 1cosA1+cosA=cosecAcotA\sqrt{\frac{1 - \cos A}{1 + \cos A}} = \cosec A - \cot A

  2. sec2A+cosec2A=tanA+cotA\sqrt{\sec^2A + \cosec^2A} = \tan A + \cot A

  3. (cosecAsinA)(secAcosA)(tanA+cotA)=1(\cosec A - \sin A)(\sec A - \cos A)(\tan A + \cot A) = 1

  4. cos4Asin4A+1=2cos2A\cos^4 A - \sin^4 A + 1 = 2\cos^2 A

  5. (sinA+cosA)(1sinAcosA)=sin3A+cos3A(\sin A + \cos A)(1 - \sin A\cos A) = \sin^3A + \cos^3A

  6. sinA1+cosA+1+cosAsinA=2cosecA\frac{\sin A}{1 + \cos A}+\frac{1 + \cos A}{\sin A} = 2\cosec A

  7. sin6Acos6A=13cos2Asin2A\sin^6A - cos^6A = 1 - 3\cos^2A\sin^2A

  8. 1sinA1+sinA=secAtanA\sqrt{\frac{1 - \sin A}{1 + \sin A}} = \sec A - \tan A

  9. cosecAcosecA1+cosecAcosecA+1=2sec2A\frac{\cosec A}{\cosec A - 1} + \frac{\cosec A}{\cosec A + 1} = 2\sec^2 A

  10. cosecAtanA+cotA=cosA\frac{\cosec A}{\tan A + \cot A} = \cos A

  11. (secA+cosA)(secAcosA)=tan2A+sin2A(\sec A + \cos A)(\sec A - \cos A) = \tan^2 A + \sin^2A

  12. 1tanA+cotA=sinAcosA\frac{1}{\tan A + \cot A} = \sin A\cos A

  13. 1tanA1+tanA=cotA1cotA+1\frac{1 - \tan A}{1 + \tan A} = \frac{\cot A - 1}{\cot A + 1}

  14. 1+tan2A1+cot2A=sin2Acos2A\frac{1 + \tan^2A}{1 + \cot^2A} = \frac{\sin^2A}{\cos^2A}

  15. secAtanAsecA+tanA=12secAtanA+2tan2A\frac{\sec A - \tan A}{\sec A + \tan A} = 1 - 2\sec A\tan A + 2\tan^2 A

  16. 1secAtanA=secA+tanA\frac{1}{\sec A - \tan A} = \sec A + \tan A

  17. tanA1cotA+cotA1tanA=secAcosecA+1\frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = \sec A\cosec A+ 1

  18. cosA1tanA+sinA1cotA=sinA+cosA\frac{\cos A}{1 - \tan A} + \frac{\sin A}{1 - \cot A} = \sin A + \cos A

  19. (sinA+cosA)(tanA+cotA)=secA+cosecA(\sin A + \cos A)(\tan A + \cot A) = \sec A + \cosec A

  20. sec4Asec2A=tan4A+tan2A\sec^4A - \sec^2A = \tan^4A + \tan^2A

  21. cot4A+cot2A=cosec4Acosec2A\cot^4A + \cot^2A = \cosec^4A - \cosec^2A

  22. cosec2A1=cosAcosecA\sqrt{\cosec^2A - 1} = \cos A\cosec A

  23. sec2Acosec2A=tan2A+cot2A+2\sec^2A\cosec^2A = \tan^2A + \cot^2A + 2

  24. tan2Asin2A=sin4Asec2A\tan^2A - \sin^2A = \sin^4A \sec^2A

  25. (1+cotAcosecA)(1+tanA+secA)=2(1 + \cot A - \cosec A)(1 + \tan A + \sec A) = 2

  26. cotAcosAcotA+cosA=cotAcosAcotAcosA\frac{\cot A\cos A}{\cot A + \cos A} = \frac{\cot A - \cos A}{\cot A \cos A}

  27. cotA+tanBcotB+tanA=cotAtanB\frac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B

  28. (1sec2Acos2A+1cosec2Asin2A)cos2Asin2A=1cos2Asin2A2+cos2Asin2A\left(\frac{1}{\sec^2 A - \cos^2A} + \frac{1}{\cosec^2A - \sin^2A}\right)\cos^2A\sin^2A = \frac{1 - \cos^2A\sin^2A}{2 + \cos^2A\sin^2A}

  29. sin8Acos8A=(sin2Acos2A)(12sin2Acos2A)\sin^8A - \cos^8A = (\sin^2A - \cos^2A)(1 - 2\sin^2A\cos^2A)

  30. cosAcosecAsinAsecAcosA+sinA=cosecAsecA\frac{\cos A\cosec A - \sin A\sec A}{\cos A + \sin A} = \cosec A - \sec A

  31. 1cosecAcotA1sinA=1sinA1cosecA+cotA\frac{1}{\cosec A - \cot A} - \frac{1}{\sin A} = \frac{1}{\sin A} - \frac{1}{\cosec A + \cot A}

  32. tanA+secA1tanAsecA+1=1+sinAcosA\frac{\tan A + \sec A - 1}{\tan A - \sec A + 1} = \frac{1 + \sin A}{\cos A}

  33. (tanA+cosecB)2(cotBsecA)2=2tanAcotB(cosecA+secB)(\tan A + \cosec B)^2 - (\cot B - \sec A)^2 = 2\tan A\cot B(\cosec A + \sec B)

  34. 2sec2Asec4A2cosec2A+cosec4A=cot4Atan4A2\sec^2 A - \sec^4A - 2\cosec^2A + \cosec^4A = \cot^4A - \tan^4A

  35. (sinA+cosecA)2+(cosA+secA)2=tan2A+cot2A+7(\sin A + \cosec A)^2 + (\cos A + \sec A)^2 = \tan^2A + \cot^2A + 7

  36. (cosecA+cotA)(1sinA)(secA+tanA)(1cosA)=(cosecAsecA)[2(1cosA)(1sinA)](\cosec A + \cot A)(1 - \sin A) - (\sec A + \tan A)(1 - \cos A) = (\cosec A - \sec A)[2 - (1 - \cos A)(1 - \sin A)]

  37. (1+cotA+tanA)(sinAcosA)=secAcosec2AcosecAsec2A(1 + \cot A + \tan A)(\sin A - \cos A) = \frac{\sec A}{\cosec^2A} - \frac{\cosec A}{\sec^2A}

  38. 1secAtanA1cosA=1cosA1secA+tanA\frac{1}{\sec A - \tan A} - \frac{1}{\cos A} = \frac{1}{\cos A} - \frac{1}{\sec A + \tan A}

  39. 3(sinAcosA)4+4(sin6A+cos6A)+6(sinA+cosA)2=133(\sin A - \cos A)^4 + 4(\sin^6 A + \cos^6 A) + 6(\sin A + \cos A)^2 = 13

  40. 1+cosA1cosA=cosecA+cotA\sqrt{\frac{1 + \cos A}{1 - \cos A}} = \cosec A + \cot A

  41. cosA1+sinA+cosA1sinA=2secA\frac{\cos A}{1 + \sin A} + \frac{\cos A}{1 - \sin A} = 2\sec A

  42. tanAsecA1+tanAsecA+1=2cosecA\frac{\tan A}{\sec A - 1} + \frac{\tan A}{\sec A + 1} = 2\cosec A

  43. 11sinA11+sinA=2secAtanA\frac{1}{1 - \sin A} - \frac{1}{1 + \sin A} = 2\sec A\tan A

  44. 1+tan2A1+cot2A=(1tanA1cotA)2\frac{1 + \tan^2 A}{1 + \cot^2 A} = \left(\frac{1 - \tan A}{1 - \cot A}\right)^2

  45. 1+2tan2Acos2A=tan4A+sec4A1 + \frac{2\tan^2 A}{\cos^2 A} = \tan^4 A + sec^4 A

  46. (1sinAcosA)2=2(1sinA)(1cosA)(1 - \sin A - \cos A)^2 = 2(1 - \sin A)(1 - \cos A)

  47. cotA+cosecA1cotAcosecA+1=1+cosAsinA\frac{\cot A + \cosec A - 1}{\cot A - \cosec A + 1} = \frac{1 + \cos A}{\sin A}

  48. (sinA+secA)2+(cosA+cosecA)2=(1+secAcosecA)2(\sin A + \sec A)^2 + (\cos A + \cosec A)^2 = (1 + \sec A\cosec A)^2

  49. 2sinAtanA(1tanA)+2sinAsec2A(1+tanA)2=2sinA1+tanA\frac{2\sin A\tan A(1 - \tan A) + 2\sin A\sec^2A}{(1 + \tan A)^2} = \frac{2\sin A}{1 + \tan A}

  50. If 2sinA=2cosA,2\sin A = 2 - \cos A, find sinA.\sin A.

  51. If 8sinA=4+cosA,8\sin A = 4 + \cos A, find sinA.\sin A.

  52. If tanA+secA=1.5,\tan A + \sec A = 1.5, find sinA.\sin A.

  53. If cotA+cosecA=5,\cot A + \cosec A = 5, find cosA.\cos A.

  54. If 3sec4A+8=10sec2A,3\sec^4 A + 8 = 10\sec^2A, find the value of tanA.\tan A.

  55. If tan2A+secA=5,\tan^2A + \sec A = 5, find cosA.\cos A.

  56. If tanA+cotA=2,\tan A + \cot A = 2, find sinA.\sin A.

  57. If sec2A=2+2tanA,\sec^2A = 2 + 2\tan A, find tanA.\tan A.

  58. If tanA=2x(x+1)2x+1,\tan A = \frac{2x(x + 1)}{2x + 1}, find sinA\sin A and cosA.\cos A.

  59. If 3sinA+5cosA=5,3\sin A + 5\cos A = 5, show that 5sinA3cosA=±35\sin A - 3\cos A = \pm 3

  60. If secA+tanA=secAtanA\sec A + \tan A = \sec A - \tan A prove that each side is ±1\pm 1

  61. If cos4Acos2B+sin4Asin2B=1,\frac{\cos^4 A}{\cos^2 B} + \frac{\sin^4 A}{\sin^2 B} = 1, prove that

    1. sin4A+sin4B=2sin2Asin2B\sin^4A + \sin^4B = 2\sin^2A \sin^2B

    2. cos4Bcos2A+sin4Bsin2A=1,\frac{\cos^4 B}{\cos^2 A} + \frac{\sin^4 B}{\sin^2 A} = 1,

  62. If cosA+sinA=2cosA,\cos A + \sin A = \sqrt{2}\cos A, prove that cosAsinA=±2sinA\cos A - \sin A = \pm \sqrt{2}\sin A

  63. If acosAbsinA=c,a\cos A - b\sin A = c, prove that asinA+bcosA=a2+b2c2a\sin A + b\cos A = \sqrt{a^2 + b ^2 - c^2}

  64. If 1sinA=1+sinA,1 - \sin A = 1 + \sin A, then prove that value of each side is ±cosA\pm \cos A

  65. If sin4A+sin2A=1,\sin^4 A + \sin^2 A = 1, prove that

    1. 1tan4A+1tan2A=1\frac{1}{\tan^4 A} + \frac{1}{\tan^2A} = 1

    2. tan4Atan2=1\tan^4A - \tan^2 = 1

  66. If cos2Asin2A=tan2B,\cos^2A - \sin^2 A = \tan^2 B, prove that 2cos2B1=cos2Bsin2B=tan2A2\cos^2B - 1 = \cos^2B - \sin^2B = \tan^2A

  67. If sinA+cosecA=2,\sin A + \cosec A = 2, then prove that sinnA+cosecnA=2\sin^nA + \cosec^nA = 2

  68. If tan2A=1e2,\tan^2 A = 1 - e^2, prove that secA+tan3AcosecA=(2e2)32\sec A + \tan^3A\cosec A = (2 - e^2)^\frac{3}{2}

  69. Eliminate AA between the equations asecA+btanA+c=0a\sec A + b\tan A + c = 0 and psecA+qtanA+r=0p\sec A + q\tan A + r = 0

  70. If cosecAsinA=m\cosec A - \sin A = m and secAcosA=n,\sec A - \cos A = n, elimiate AA

  71. Is the equation sec2A=4xy(x+y)2\sec^2 A = \frac{4xy}{(x + y)^2} possible for real values of xx and yy?

  72. Show that the equation sinA=x+1x\sin A = x + \frac{1}{x} is imossible for real values of x.x.

  73. If secAtanA=p,p0,\sec A - \tan A = p, p\neq 0, find tanA,secA\tan A, \sec A and sinA.\sin A.

  74. If secA=p+14p,\sec A = p + \frac{1}{4p}, show that secA+tanA=2p\sec A + \tan A = 2p or 12p.\frac{1}{2p}.

  75. If sinAsinB=p,cosAcosB=q,\frac{\sin A}{\sin B} = p, \frac{\cos A}{\cos B} = q, find tanA\tan A and tanB.\tan B.

  76. If sinAsinB=2,tanAtanB=3,\frac{\sin A}{\sin B} = \sqrt{2}, \frac{\tan A}{\tan B}= \sqrt{3}, find AA and B.B.

  77. If tanA+cotA=2,\tan A + \cot A = 2, find sinA.\sin A.

  78. If m=tanA+sinAm = \tan A + \sin A and n=tanAsinA,n = \tan A - \sin A, prove that m2n2=4mn.m^2 - n^2 = 4\sqrt{mn}.

  79. If sinA+cosA=m\sin A + \cos A = m and secA+cosecA=n,\sec A + \cosec A = n, prove that n(m21)=2m.n(m^2 - 1) = 2m.

  80. If xsin3A+ycos3A=sinAcosAx\sin^3 A + y\cos^3 A = \sin A\cos A and xsinAycosA=0,x\sin A - y\cos A = 0, prove that x2+y2=1x^2 + y^2 = 1

  81. Prove that sin2A=(x+y)24xy\sin^2A = \frac{(x + y)^2}{4xy} is possible for real values of xx and yy only when x=yx = y and x,y0x,y \neq 0