23. Trigonometrical Equations and their General Solutions#

23.1. Trigonometrical Equation#

An equation involving one or more trigonometrical ratios of unknown angle is called trigonometrical equation.

Ex. cos2x4sinx=1\cos^2x - 4\sin x = 1

A trigonometrical identity is satisfied for every value of the unknown angle whereas trigonometrical equation is satisfied for only some values of unknown angle. For example, 1cos2x=sin2x1 - \cos^2x = \sin^2x is a trigonometrical identity because it is satisfied for every value of x.x.

23.2. Solution of a Trigonometrical Equation#

A value of the unknown angle which satisfies the given trigonometrical equation is called a solution or root of the equation.

For example, 2sinθ=1θ=30,1502\sin\theta = 1 \Rightarrow \theta = 30^\circ, 150^\circ which are two solutions between 00 and 2π.2\pi.

23.3. General Solution#

Some trigonometrical functions are periodic functions, therefore, solutions of trigonometrical equations can be generalized with the help of periodicirty of trigonometrical functions. The solution consisting of all possible solutions of a trigonometrical equation is called its general solution.

For example, sinθ=0\sin\theta = 0 has a genral solution which is nπn\pi where nI.n\in I.

Similarly, fo cosθ=0,\cos\theta = 0, the general solution is (2n+1)π2,(2n + 1)\frac{\pi}{2}, where nIn\in I and for tanθ=0\tan\theta = 0 the solution is again nπ.n\pi.

23.3.1. General Solution of sinθ=sinα\sin\theta = \sin\alpha#

Given, sinθ=sinαsinθsinα=0\sin\theta = \sin\alpha \Rightarrow \sin\theta - \sin\alpha = 0

2cosθ+α2sinθα2=0\Rightarrow 2\cos\frac{\theta + \alpha}{2}\sin\frac{\theta - \alpha}{2} = 0

Case I cosθ+α2=0\cos\frac{\theta + \alpha}{2} = 0

θ+α=(2m+1)π,mI\Rightarrow \theta + \alpha = (2m + 1)\pi, m\in I

Case II sinθα2=0\sin\frac{\theta - \alpha}{2} = 0

θα=2mπθ=2mπ+α\Rightarrow \theta - \alpha = 2m\pi \Rightarrow \theta = 2m\pi + \alpha

Thus, θ=nπ+(1)nα,nI\theta = n\pi + (-1)^n\alpha, n\in I

23.3.2. General Solution of cosθ=cosα\cos\theta = \cos\alpha#

Given, cosθ=cosαcosθcosα=0\cos\theta = \cos\alpha \Rightarrow \cos\theta - \cos\alpha = 0

2sinα+θ2sinθα2=0\Rightarrow 2\sin\frac{\alpha + \theta}{2}\sin\frac{\theta - \alpha}{2} = 0

Case I: sinα+θ2=0\sin\frac{\alpha + \theta}{2} = 0

α+θ=2nπθ=2nπα\alpha + \theta = 2n\pi \Rightarrow \theta = 2n\pi - \alpha

Case II: sinθα2=0θ=2nπ+α\sin\frac{\theta - \alpha}{2} = 0 \Rightarrow \theta = 2n\pi + \alpha

Thus, θ=2nπ±α\theta = 2n\pi \pm\alpha

23.3.3. General Solution of tanθ=tanα\tan\theta = \tan\alpha#

Given tanθ=tanαsinθcosθ=sinαcosα\tan\theta = \tan\alpha \Rightarrow \frac{\sin\theta}{\cos\theta} = \frac{\sin\alpha}{\cos\alpha}

sin(θα)=0θα=nπ\Rightarrow \sin(\theta - \alpha) = 0 \therefore \theta - \alpha = n\pi

θ=nπ+α\theta = n\pi + \alpha

23.4. Principal Value#

For any equation having multiple solutions, the solution having least numerical value is known as principal value.

Example: Let sinθ=12\sin\theta = \frac{1}{2} then θ=π/6,5π/6,13π/6,17π/6,,7π/6,11π/6,\ldost\theta = \pi/6, 5\pi/6, 13\pi/6, 17\pi/6, \ldots, -7\pi/6, -11\pi/6, \ldost

As π/6\pi/6 is the least numerical value so it is the principal value in this case.

23.4.1. Method for Finding Principal Value#

For this case we consider sinθ=12.\sin\theta = -\frac{1}{2}. Since it is negative, θ\theta will be in third or fourth quadrant. We can approach this either using clockwise direction or annticlockwise direction. If we take anticlockwise direction principal value will be greater than π\pi and in case of clockwise direction it will be less than π.\pi. For principal value, we have to take numerically smallest angle.

So for principal value:

  1. If the angle is in 1st or 2nd quadrant we must select anticlockwise direction i.e. principal value will be positive. If the angle is in 3rd or 4th quadrant we must select clockwise direction i.e. principal value will be negative.

  2. Principal value is always numerically smaller than π\pi

  3. Principal values always lies in the first circle i.e. first rotation.

23.5. Tips for Finding Complete Solution#

  1. There should be no extraneous root.

  2. There should be no less root.

  3. Squaring should be avoided as far as possible. If it is done then check for extraneous roots.

  4. Never cancel equal terms containing unknown on two sides which are in product. It may cause root loss.

  5. The answer should not contain such values of root which may make any of the terms undefined.

  6. Domain should not change. If it changes, necessary correction must be made.

  7. Check that denominator is not zero at any stage while solving equations.

23.6. Problems#

Find the most general values of θ\theta satisfying the equations:

  1. sinθ=1\sin\theta = -1

  2. cosθ=12\cos\theta = -\frac{1}{2}

  3. tanθ=3\tan\theta = \sqrt{3}

  4. secθ=2\sec\theta = -\sqrt{2}

Solve the equations:

  1. sin9θ=sinθ\sin9\theta = \sin\theta

  2. sin5x=cos2x\sin5x = \cos2x

  3. sin3x=sinx\sin3x = \sin x

  4. sin3x=cos2x\sin3x = \cos2x

  5. sinax+cosbx=0\sin ax + \cos bx = 0

  6. tanxtan4x=1\tan x\tan4x = 1

  7. cosθ=sin105+cos105\cos\theta = \sin105^\circ + \cos 105^\circ

Solve the following:

  1. 7cos2θ+3sin2θ=47\cos^2\theta + 3\sin^2\theta = 4

  2. 3tan(θ15)=tan(θ+15)3\tan(\theta - 15^\circ) = \tan(\theta + 15^\circ)

  3. tanx+cotx=2\tan x + \cot x = 2

  4. sin2θ=sin2α\sin^2\theta = \sin^2\alpha

  5. tan2x+cot2x=2\tan^2x + \cot^2x = 2

  6. tan2x=3cosec2x1\tan^2x = 3\cosec^2x - 1

  7. 2sin2x+sin22x=22\sin^2x + \sin^22x = 2

  8. 7cos2x+3sin2x=47\cos^2x + 3\sin^2x = 4

  9. 2cos2x+2sinx=22\cos2x + \sqrt{2\sin x} = 2

  10. 8tan2x2=1+secx8\tan^2\frac{x}{2} = 1 + \sec x

  11. cosxcos2xcos3x=14\cos x\cos2x\cos3x = \frac{1}{4}

  12. tanx+tan2x+tan3x=0\tan x + \tan2x + \tan3x = 0

  13. cotxtanxcosx+sinx=0\cot x - \tan x - \cos x + \sin x = 0

  14. 2sin2x5sinxcosx8cos2x=22\sin^2x - 5\sin x\cos x - 8\cos^2x = -2

  15. (1tanx)(1+sin2x)=1+tanx(1 - \tan x)(1 + \sin2x) = 1 + \tan x

  16. Solve for x,(πxπ-\pi \leq x \leq \pi), the equation 2(cosx+cos2x)+sin2x(1+2cosx)=2sinx2(\cos x + \cos2x) + \sin2x(1 + 2\cos x) = 2\sin x

  17. Find all the solutions of the equation 4cos2xsinx2sin2x=3sinx4\cos^2x\sin x - 2\sin^2x = 3\sin x

  18. 2+7tan2x=3.25sec2x2 + 7\tan^2x = 3.25\sec^2x

  19. Find all the values of xx for which cos2x+cos4x=2cosx\cos 2x + \cos 4x = 2\cos x

  20. 3tanx+cotx=5cosecx3\tan x + \cot x = 5\cosec x

  21. Find the value of xx between 00 and 2π2\pi for which 2sin2x=3cosx2\sin^2x = 3\cos x

  22. Find the solution of sin2xcosx=14\sin^2x - \cos x = \frac{1}{4} in the interbal 00 to 2π.2\pi.

  23. Solve 3tan2x2sinx=03\tan^2x - 2\sin x = 0

  24. Find all values of xx satisfying the equation sinx+sin5x=sin3x\sin x + \sin5x = \sin 3x between 00 and π.\pi.

  25. sin6x=sin4xsin2x\sin6x = \sin4x - \sin2x

  26. cos6x+cos4x+cos2x+1=0\cos6x + \cos 4x + \cos 2x + 1 = 0

  27. cosx+cos2x+cos3x=0\cos x + \cos 2x + \cos 3x = 0

  28. Find the values of xx between 00 and 2π,2\pi, for which cos3x+cos2x=sin3x2+sinx2\cos3x + \cos2x = \sin\frac{3x}{2} + \sin\frac{x}{2}

  29. tanx+tan2x+tan3x=tanx.tan2x.tan3x\tan x+ \tan2x + \tan3x = \tan x.\tan2x.\tan3x

  30. tanx+tan2x+tanxtan2x=1\tan x + \tan 2x + \tan x\tan 2x = 1

  31. sin2x+cos2x+sinx+cosx+1=0\sin2x + \cos2x + \sin x + \cos x + 1 = 0

  32. sinx+sin2x+sin3x=cosx+cos2x+cos3x\sin x + \sin 2x + \sin 3x = \cos x + \cos 2x + \cos 3x

  33. cos6x+cos4x=sin3x+sinx\cos6x + \cos4x = \sin3x + \sin x

  34. sec4xsec2x=2\sec4x - \sec2x = 2

  35. cos2x=(2+1)(cosx12)\cos2x = (\sqrt{2} + 1)\left(\cos x - \frac{1}{\sqrt{2}}\right)

  36. Find all the angles between pi-pi and π\pi for which 5cos2x+2cos2x2+1=05\cos2x + 2\cos^2\frac{x}{2} + 1 = 0

  37. cotxtanx=secx\cot x - \tan x = \sec x

  38. 1+secx=cot2x21 + \sec x = \cot^2\frac{x}{2}

  39. cos3xcos3x+sin3xsin3x=0\cos3x\cos^3x + \sin3x\sin^3x = 0

  40. sin3x+sinxcosx+cos3x=1\sin^3x + \sin x\cos x + \cos^3x = 1

  41. Find all the value of xx between 00 and π2,\frac{\pi}{2}, for which sin7x+sin4x+sinx=0\sin 7x + \sin4x + \sin x = 0

  42. sinx+3cosx=2\sin x + \sqrt{3}\cos x = \sqrt{2}

  43. Find the values of xx for which 27cos2x.81sin2x27^{\cos2x}.81^{\sin2x} is minimum. Also, find this minimum value.

  44. If 32tan8x=2cos2y3cosy32\tan^8x = 2\cos^2y - 3\cos y and 3cos2x=1,3\cos2x = 1, then find the general value of y.y.

  45. Find all the values of xx in the interval (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) for which (1tanx)(1+tanx)sec2x+2tan2x=0(1 - \tan x)(1 + \tan x)sec^2x + 2^{\tan^2x} = 0

  46. Solve the equation ecosx=ecosx+4.e^{\cos x} = e^{-\cos x} + 4.

  47. If (1+tanx)(1+tany)=2.(1 + \tan x)(1 + \tan y) = 2. Find all the values of x+y.x + y.

  48. If tan(cotx)=cot(tanx),\tan(\cot x) = \cot(\tan x), prove that sin2x=4(2n+1)π\sin 2x = \frac{4}{(2n + 1)\pi}

  49. If xx and yy are two distinct roots of the equation atanz+bsecz=c.a\tan z+ b\sec z = c. Prove that tan(x+y)=2aca2c2\tan(x + y) = \frac{2ac}{a^2 - c^2}

  50. If sin(πcosx)=cos(πsinx),\sin(\pi\cos x) = \cos(\pi\sin x), prove that 1. cos(x±π4)=122\cos\left(x \pm \frac{\pi}{4}\right) = \frac{1}{2\sqrt{2}} 2. sin2x=34\sin2x = -\frac{3}{4}

  51. Determine the smallest positive values of xx for which tan(x+100)=tan(x+50).tanx.tan(x50)\tan(x + 100^\circ) = \tan(x + 50^\circ).\tan x.\tan(x - 50^\circ)

  52. Find the general value of xx for which tan2x+sec2x=1.\tan^2x + \sec 2x = 1.

  53. Solve the equation secxcosecx=43\sec x - \cosec x = \frac{4}{3}

  54. Find solutions x[0,2π]x\in[0, 2\pi] of equation sin2x12(sinxcosx)+12=0.\sin2x - 12(\sin x - \cos x) + 12 = 0.

  55. Find the smallest positive number r:math:p for which the equation cos(psinx)=sin(pcosx)\cos(p\sin x) = \sin(p\cos x) has a solution for x[0,2π].x\in [0, 2\pi].

  56. Solve cosx+3sinx=2cos2x\cos x + \sqrt{3}\sin x = 2\cos2x

  57. Solve tanx+secx=3\tan x+ \sec x = \sqrt{3} for x[0,2π].x\in[0, 2\pi].

  58. Solve 1+sin3x+cos3x=32sin2x1 + \sin^3x + \cos^3x = \frac{3}{2}\sin2x

  59. Solve the equation (2+3)cosx=1sinx(2 + \sqrt{3})\cos x = 1 - \sin x

  60. Solve the equation tan(π2sinx)=cot(π2cosx)\tan\left(\frac{\pi}{2}\sin x\right) = \cot\left(\frac{\pi}{2}\cos x\right)

  61. Solve 8cosxcos2xcos4x=sin6xsinx8\cos x\cos2x\cos4x = \frac{\sin6x}{\sin x}

  62. Solve 32cosx4sinxcos2x+sin2x=03 - 2\cos x - 4\sin x -\cos 2x + \sin 2x = 0

  63. Solve sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x

  64. Solve sin2xtanx+cos2xcotxsin2x=1+tanx+cotx\sin^2x\tan x + \cos^2x\cot x - \sin 2x = 1 + \tan x + \cot x

  65. Find the most general value of xx which satisfies both the equations sinx=12\sin x= -\frac{1}{2} and tanx=13\tan x = \frac{1}{\sqrt{3}}

  66. If tan(xy)=1\tan(x - y) = 1 and sec(x+y)=23,\sec(x + y) = \frac{2}{\sqrt{3}}, find the smallest positive values of xx and yy and their most general value.

  67. Find the points of intersection of the curves y=cosxy = \cos x and y=sin3xy = \sin 3x if π2xπ2.-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}.

  68. Find all values of x[0,2π]x\in [0, 2\pi] such that rsinx=3r\sin x = \sqrt{3} and r+4sinx=2(3+1)r + 4\sin x = 2(\sqrt{3} + 1)

  69. Find the smallest positive values of xx and yy satisfying xy=π4x - y = \frac{\pi}{4} and cotx+coty=2.\cot x + \cot y = 2.

  70. Find the general values of xx and yy such that 5sinxcosy=15\sin x\cos y = 1 and 4tanx=tany.4\tan x = \tan y.

  71. Find all values of xx lying between 00 and 2π,2\pi, such that rsinx=3r\sin x = 3 and r=4(1+sinx)r = 4(1 + \sin x)

  72. If sinx=siny\sin x = \sin y and cosx=cosy\cos x = \cos y then prove that either x=yx = y or xy=2nπ,x - y = 2n\pi, where nI.n\in I.

  73. If cos(xy)=12\cos(x - y) = \frac{1}{2} and sin(x+y)=12\sin(x + y) = \frac{1}{2} find the smallest positive values of xx and yy and also their most general values.

  74. Find the points of intersection of the curves y=cos2xy = \cos 2x and y=sinxy = \sin x for, π2xπ2.-\frac{\pi}{2}\leq x\leq \frac{\pi}{2}.

  75. Find the most general value of xx which satisfies the equations cosx=12\cos x = \frac{1}{\sqrt{2}} and tanx=1.\tan x = -1.

  76. Find the most general value of xx which satisfies the equations tanx=3\tan x = \sqrt{3} and cosecx=23\cosec x = -\frac{2}{\sqrt{3}}

  77. If xx and yy be two distinct values of zz lying between 00 and 2π,2\pi, satisfying the equation 3cosz+4sinz=2,3\cos z + 4\sin z = 2, find the value of sin(x+y).\sin(x + y).

  78. Show that the equation 2cos2x2sin2x=x2+x22\cos^2\frac{x}{2}\sin^2x = x^2+ x^{-2} for 0<xπ20<x\leq\frac{\pi}{2} has no real solution.

  79. Find the real value of xx such that y=3+2isinx12isinxy = \frac{3 + 2i\sin x}{1 - 2i\sin x} is either real or purely imaginary.

  80. Determine for which values of aa the equation a22a+sec2π(a+x)=0a^2 - 2a + \sec^2\pi(a + x) = 0 has solutions and find them.

  81. Find the values of xx in (π,π)(-\pi, \pi) which satisfy the equation 81+cosx+cos2x+cos3x+ to =438^{1 + |\cos x| + \cos^2x + |\cos^3 x| + \ldots \text{~to~}\infty} = 4^3

  82. Solve cosxsin2x32sinx+12=1.|\cos x|^{\sin^2x - \frac{3}{2}\sin x + \frac{1}{2}} = 1.

  83. Solve 3sin2x+2cos2x+31sin2x+2sin2x=28.3^{\sin2x + 2\cos^2x} + 3^{1 -\sin2x + 2\sin^2x} = 28.

  84. If A=(x/2cos2x+sinx2)A = (x/2\cos^2x + \sin x\leq 2) and B=(x/π2x3π2)B = \left(x/\frac{\pi}{2}\leq x\leq \frac{3\pi}{2}\right) find ABA\cap B

  85. Solve sinx+cosx=1+sinxcosx.\sin x + \cos x = 1 + \sin x\cos x.

  86. Solve sin6x+cos4x+2=0.\sin6x + \cos4x + 2 = 0.

  87. Prove that the equation sin2x+sin3x++sinnx=n1\sin2x + \sin3x + \ldots + \sin nx = n - 1 has n solution for any arbitrary integer n>2.n>2.

  88. Solve cos7x+sin4x=1.\cos^7x + \sin^4x = 1.

  89. Find the number of solutions of the equation sinx+2sin2x=3+sin3x\sin x + 2\sin2x = 3 + \sin3x in the interval 0xπ.0\leq x\leq \pi.

  90. For what value of kk the equation sinx+cos(k+x)+cos(kx)=2\sin x + \cos(k + x) + \cos(k - x) = 2 has real solutions.

  91. Solve for xx and y,y, the equation xcos3y+3xcosy.sin2y=14x\cos^3y + 3x\cos y.\sin^2y = 14 and xsin3y+3xcos2ysiny=13x\sin^3y + 3x\cos^2y\sin y = 13

  92. Find all the values of α\alpha for which the equation sin4x+cos4x+sin2x+α=0\sin^4x + \cos^4x + \sin2x + \alpha = 0 is valid.

  93. Solve tan(x+π4)=2cotx1.\tan\left(x + \frac{\pi}{4}\right) = 2\cot x - 1.

  94. If x,yx, y be two angles both satisfying the equation acos2z+bsin2z=c,a\cos 2z + b\sin2z = c, prove that cos2x+cos2y=a2+ac+b2a2+b2\cos^2x + \cos^2y = \frac{a^2 + ac + b^2}{a^2 + b^2}

  95. If x1,x2,x3,x4x_1, x_2, x_3, x_4 be roots of the equation sin(x+y)=ksin2x,\sin(x + y) = k\sin 2x, no two of which differ by a multiple of 2π,2\pi, prove that x1+x2+x3+x4=(2n+1)π.x_1 + x_2 + x_3 + x_4 = (2n + 1)\pi.

  96. Show that the equation secx+cosecx=c\sec x + \cosec x = c has two roots between 00 and π\pi if c2<8c^2<8 and four roots if c2>8.c^2 > 8.

  97. Let λ\lambda and α\alpha be real. Find the set of all values of λ\lambda for which the system of linear equations λx+ysinα+zcosα=0,x+ycosα+zsinα=0,x+ysinαzcosα=0\lambda x + y\sin\alpha + z\cos\alpha = 0, x + y\cos\alpha + z\sin\alpha = 0, -x + y\sin\alpha - z\cos\alpha = 0 has non-trivial solution. For λ=1,\lambda = 1, find all the values of α.\alpha.

  98. Find the values of xx and y,0<x,y<π2,y, 0<x,y<\frac{\pi}{2}, satisfying the equation cosxcosycos(x+y)=18\cos x \cos y\cos(x + y) = -\frac{1}{8}

  99. Find the number of distinct real roots of sinxcosxcosxcosxsinxcosxcosxcosxsinx=0\begin{vmatrix}\sin x& \cos x & \cos x \\\cos x & \sin x & \cos x\\\cos x & \cos x & \sin x\end{vmatrix} = 0 in the interval π4xπ4.-\frac{\pi}{4}\leq x\leq \frac{\pi}{4}.

  100. Find the number of values of xx in the interval [0,5π][0, 5\pi] satisfying the equation 3sin2x7sinx+2=0.3\sin^2x - 7\sin x + 2 = 0.

  101. Find the range of yy such that the following equation in x,x, y+cosx=sinxy + \cos x = \sin x has a real solution. For y=1,y = 1, find xx such that 0x2π.0\leq x\leq2\pi.

  102. Solve r=1nsin(rx)sin(r2x)=1\sum_{r = 1}^n\sin(rx)\sin(r^2x) = 1

  103. Show that the equation sinx(sinx+cosx)=a\sin x(\sin x + \cos x) = a has real solutions if aa is a real number lying between 12(12)\frac{1}{2}(1 - \sqrt{2}) and 12(1+2).\frac{1}{2}(1 + \sqrt{2}).

  104. Find the real solutions of the equation 2cos2x2+x6=2x+2x.2\cos^2\frac{x^2 + x}{6} = 2^x + 2^{-x}.

  105. Solve the inequality sinxcos2x.\sin x\geq \cos2x.

  106. Find the general solution of the equation (cosx42sinx)sinx+(1+sinx42cosx)cosx=0\left(\cos\frac{x}{4} - 2\sin x\right)\sin x + \left(1 + \sin \frac{x}{4} -2\cos x\right)\cos x = 0

  107. Find the general solution of the equation 2(sinxcos2x)sin2x(1+2sinx)+2cosx=0.2(\sin x -\cos2x) - \sin2x(1 + 2\sin x) + 2\cos x = 0.

  108. Solve sin2xsin2x+π3=0.\frac{\sin2x}{\sin\frac{2x + \pi}{3}} = 0.

  109. Solve the equation 3tan2x4tan3x=tan23xtan2x3\tan2x - 4\tan3x = \tan^23x\tan2x

  110. Solve the equation 1+sin2x=2cos2x.\sqrt{1 + \sin2x} = \sqrt{2}\cos2x.

  111. Show that x=0x = 0 is the only solution satisfying the equation 1+sin2ax=cosx1 + \sin^2ax = \cos x where aa is irrational.

  112. Consider the system of linear equarions in x,yx, y and z,xsin3θy+z=0,xcos2θ+4y+3z=0,2x+7y+7z=0.z, x\sin3\theta -y + z = 0, x\cos2\theta + 4y + 3z = 0, 2x + 7y + 7z = 0. Find the values of θ\theta for which the system has non-trivial solutions.

  113. Find all the solutions of the equation sinx+sinπ8(1cosx)2+sin2x=0\sin x + \sin\frac{\pi}{8}\sqrt{(1 - \cos x)^2 + \sin^2x} = 0 in the interval [5π2,7π2]\left[\frac{5\pi}{2}, \frac{7\pi}{2}\right]

  114. Let A={x:tanxtan2x>0}A = \{x: \tan x -\tan^2x > 0\} and y={x:sinx<12}y = \left\{x: |\sin x|<\frac{1}{2}\right\}. Determine AB.A\cap B.

  115. If 0x2π,0\leq x\leq 2\pi, then solve 21sin2xy22y+222^{\frac{1}{\sin^2x}}\sqrt{y^2 - 2y + 2}\leq 2

  116. If tanx=tanx+1cosx(0x2π)|\tan x| = \tan x + \frac{1}{\cos x}(0\leq x\leq 2\pi) then prove that x=7π6x = \frac{7\pi}{6} or 11π6\frac{11\pi}{6}

  117. Find the smallest positive solution satisfying logcosxsinx+logsinxcosx=2\log_{\cos x}\sin x + \log_{\sin x}\cos x = 2

  118. Solve the inequality sinxcosx+12tanx1\sin x\cos x + \frac{1}{2}\tan x\geq 1

  119. Solve tanxcos2x=cotxsinx\tan x^{\cos^2 x} = \cot x^{\sin x}

  120. If 0α,β3,0\leq \alpha, \beta \leq 3, then x2+4+3cos(αx+β)=2xx^2 + 4 + 3\cos(\alpha x + \beta) = 2x has at least one solution, then prove thatt α+β=π,3π.\alpha + \beta = \pi, 3\pi.

  121. Prove that the equation 2sinx=x+a2\sin x = |x| + a has no solution for a(33π3,)a\in \left(\frac{3\sqrt{3 - \pi}}{3}, \infty\right)