11. Transformation Formulae Solutions#

  1. Given, sin75sin15cos75+cos15\frac{\sin 75^\circ - \sin 15^\circ}{\cos 75^\circ + \cos 15^\circ}

    =2cos75+152sin751522cos75+152cos75152= \frac{2\cos \frac{75^\circ + 15^\circ}{2}\sin \frac{75^\circ - 15^\circ}{2}}{2\cos \frac{75^\circ + 15^\circ}{2}\cos \frac{75^\circ - 15^\circ}{2}}

    =2cos45sin302cos45cos30=tan30=13= \frac{2\cos 45^\circ\sin30^\circ}{2\cos45^\circ\cos30^\circ} = \tan30^\circ = \frac{1}{\sqrt{3}}

  2. Given, (cosθcos2θ)(sin8θ+sin2θ)(sin5θsinθ)(cos4θcos6θ)=2sin2θsinθ.2sin5θcos3θ2cos3θsin2θ.2sin5θsinθ\frac{(\cos \theta - \cos 2\theta)(\sin 8\theta + \sin 2\theta)}{(\sin 5\theta - \sin\theta)(\cos 4\theta - \cos 6\theta)} = \frac{2\sin2\theta\sin\theta.2\sin5\theta\cos3\theta}{2\cos3\theta\sin2\theta.2\sin5\theta\sin\theta}

    =1= 1

  3. We have to prove, sin7θsin5θcos7θ+cos5θ=tanθ\frac{\sin7\theta - \sin5\theta}{\cos7\theta + \cos5\theta} = \tan\theta

    L.H.S. =2cos6θsinθ2cos6θcosθ=tanθ= \frac{2\cos6\theta\sin\theta}{2\cos6\theta\cos\theta} = \tan\theta

  4. We have to prove, cos6θcos4θsin6θ+sin4θ=tanθ\frac{\cos6\theta - \cos4\theta}{\sin6\theta + \sin4\theta} = -\tan\theta

    L.H.S. =2sin5θsin(θ)2sin5θcosθ=tanθ= \frac{2\sin5\theta\sin(-\theta)}{2\sin5\theta\cos\theta} = -\tan\theta

  5. We have to prove, sinA+sin3AcosA+cos3A=tan2A\frac{\sin A + \sin 3A}{\cos A + \cos 3A} = \tan 2A

    L.H.S. =2sin2Acos(A)2cos2Acos(A)=tan2A= \frac{2\sin2A\cos(-A)}{2\cos2A\cos(-A)} = \tan 2A

  6. We have to prove, sin7AsinAsin8Asin2A=cos4Asec5A\frac{\sin 7A - \sin A}{\sin 8A - \sin 2A} = \cos 4A\sec 5A

    L.H.S. =2cos4Asin3A2cos5Asin3A=cos4Asec5A= \frac{2\cos4A\sin3A}{2\cos5A\sin3A} = \cos4A\sec5A

  7. We have to prove, cos2B+cos2Acos2Bcos2A=cot(A+B)cot(AB)\frac{\cos 2B + \cos 2A}{\cos 2B - \cos 2A} = \cot(A + B)\cot(A - B)

    L.H.S. =2cos(A+B)cos(AB)2sin(A+B)sin(AB)=cot(A+B)cot(AB)= \frac{2\cos(A + B)\cos(A - B)}{2\sin(A + B)\sin(A - B)} = \cot(A + B)\cot(A - B)

  8. We have to prove, sin2A+sin2Bsin2Asin2B=tan(A+B)tan(AB)\frac{\sin 2A + \sin 2B}{\sin 2A - \sin 2B} = \frac{\tan(A + B)}{\tan(A - B)}

    L.H.S. =2sin(A+B)cos(AB)2cos(A+B)sin(AB)= \frac{2\sin(A + B)\cos(A - B)}{2\cos(A + B)\sin(A - B)}

    =tan(A+B)tan(AB)= \frac{\tan(A + B)}{\tan(A - B)}

  9. We have to prove, sinA+sin2AcosAcos2A=cotA2\frac{\sin A + \sin 2A}{\cos A - \cos 2A} = \cot \frac{A}{2}

    L.H.S. =2sin3A2cosA22sin3A2sinA2= \frac{2\sin\frac{3A}{2}\cos\frac{A}{2}}{2\sin\frac{3A}{2}\sin\frac{A}{2}}

    =cotA2= \cot\frac{A}{2}

  10. We have to prove, sin5Asin3Acos3A+cos5A=tanA\frac{\sin 5A - \sin 3A}{\cos 3A + \cos 5A} = \tan A

    L.H.S. =2cos4AsinA2cos4AcosA=tanA= \frac{2\cos4A\sin A}{2\cos4A\cos A} = \tan A

  11. We have to prove, cos2Bcos2Asin2B+sin2A=tan(AB)\frac{\cos 2B - \cos 2A}{\sin 2B + \sin 2A} = \tan(A - B)

    L.H.S. =2sin(A+B)sin(AB)2sin(A+B)cos(AB)=tan(AB)= \frac{2\sin(A + B)\sin(A - B)}{2\sin(A + B)\cos(A - B)} = \tan(A - B)

  12. We have to prove, cos(A+B)+sin(AB)=2sin(45+A)cos(45+B)\cos (A + B) + \sin(A - B) = 2\sin(45^\circ + A)\cos(45^\circ + B)

    L.H.S. =cosAcosBsinAsinB+sinAcosBcosAsinB= \cos A\cos B - \sin A\sin B + \sin A\cos B - \cos A\sin B

    =(sinA+cosA)(cosBsinB)= (\sin A + \cos A)(\cos B - \sin B)

    =2(12sinA+12cosA)(12cosB12sinB)= 2(\frac{1}{\sqrt{2}}\sin A + \frac{1}{\sqrt{2}}\cos A)(\frac{1}{\sqrt{2}}\cos B - \frac{1}{\sqrt{2}}\sin B)

    =2(sinAcos45+sin45sinA)(cos45cosBsin45sinB)= 2(\sin A\cos 45^\circ + \sin 45^\circ\sin A)(\cos 45^\circ\cos B - \sin 45^\circ\sin B)

    =2sin(45+A)cos(45+B)= 2\sin(45^\circ + A)\cos(45^\circ + B)

  13. We have to prove, cos3AcosAsin3AsinA+cos2Acos4Asin4Asin2A=sinAcos2Acos3A\frac{\cos 3A - \cos A}{\sin 3A - \sin A} + \frac{\cos 2A - \cos 4A}{\sin 4A - \sin 2A} = \frac{\sin A}{\cos 2A\cos 3A}

    L.H.S. =2sin2AsinA2cos2AsinA+2sin3AsinA2cos3AsinA= \frac{-2\sin 2A\sin A}{2\cos 2A\sin A} + \frac{2\sin 3A\sin A}{2\cos 3A\sin A}

    =sin2Acos2A+sin3Acos3A= \frac{-\sin 2A}{\cos 2A} + \frac{\sin 3A}{\cos 3A}

    =cos2Asin3Asin2Acos3Acos2Acos3A=sin(3A2A)cos2Acos3A= \frac{\cos 2A\sin 3A - \sin 2A\cos 3A}{\cos 2A\cos 3A} = \frac{\sin(3A - 2A)}{\cos 2A\cos 3A}

    =sinAcos3Acos3A= \frac{\sin A}{\cos 3A\cos 3A}

  14. Given, sin(4A2B)+sin(4B2A)cos(4A2B)+cos(4B2A)=tan(A+B)\frac{\sin (4A - 2B) + \sin (4B - 2A)}{\cos (4A - 2B) + \cos (4B - 2A)} = \tan(A + B) L.H.S. =2sin(A+B)cos3(AB)2cos(A+B)cos3(AB)=tan(A+B)= \frac{2\sin(A + B)\cos3(A - B)}{2\cos(A + B)\cos3(A - B)} = \tan(A + B)

  15. We have to prove, tan5θ+tan3θtan5θtan3θ=4cos2θcos4θ\frac{\tan 5\theta + \tan 3\theta}{\tan 5\theta - \tan 3\theta} = 4\cos 2\theta\cos 4\theta

    L.H.S. =sin5θcos5θ+sin4θcos3θsin5θcos5θsin4θcos3θ= \frac{\frac{\sin5\theta}{\cos5\theta} + \frac{\sin4\theta}{\cos3\theta}}{\frac{\sin5\theta}{\cos5\theta} - \frac{\sin4\theta}{\cos3\theta}}

    =sin5θcos3θ+sin3θcos5θsin5θcos3θsin3θcos5θ= \frac{\sin5\theta\cos3\theta + \sin3\theta\cos5\theta}{\sin5\theta\cos3\theta - \sin3\theta\cos5\theta}

    =sin8θsin2θ=2sin4θcosθsin2θ= \frac{\sin8\theta}{\sin2\theta} = \frac{2\sin4\theta\cos\theta}{\sin2\theta}

    =4sin2θcos2θcos4θsin2θ=4cos2θcos4θ= \frac{4\sin2\theta\cos2\theta\cos4\theta}{\sin2\theta} = 4\cos2\theta\cos4\theta

  16. We have to prove, cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ=cos2θsin2θtan3θ\frac{\cos 3\theta + 2\cos5\theta + \cos 7\theta}{\cos\theta + 2\cos3\theta + \cos 5\theta} = \cos 2\theta - \sin 2\theta\tan 3\theta

    Adding first and last terms of numerator and denominator, we have

    L.H.S. =2cos5θcos2θ+2cos5θ2cos3θcos2θ+2cos3θ= \frac{2\cos5\theta\cos2\theta + 2\cos5\theta}{2\cos3\theta\cos2\theta + 2\cos3\theta}

    =cos5θ(cos2θ+1)cos3θ(cos2θ+1)= \frac{\cos5\theta(\cos2\theta + 1)}{\cos3\theta(\cos2\theta + 1)}

    =cos3θcos2θsin3θsin2θcos3θ= \frac{\cos3\theta\cos2\theta - \sin3\theta\sin2\theta}{\cos3\theta}

    =cos2θsin2θtan3θ= \cos2\theta - \sin2\theta\tan3\theta

  17. We have to prove, sinA+sin3A+sin5A+sin7AcosA+cos3A+cos5A+cos7A=tan4A\frac{\sin A + \sin 3A + \sin 5A + \sin 7A}{\cos A + \cos 3A + \cos 5A + \cos 7A} = \tan 4A

    Pairing first and fourth term and second and third term in numerator and denominator, we get

    L.H.S. =2sin4Acos3A+2sin4AcosA2cos4Acos3A+2cos4AcosA= \frac{2\sin4A\cos3A + 2\sin4A\cos A}{2\cos4A\cos3A + 2\cos4A\cos A}

    =2sin4A(cos3A+cosA)2cos4A(cos3A+cosA)= \frac{2\sin4A(\cos 3A + \cos A)}{2\cos4A(\cos 3A + \cos A)}

    =tan4A= \tan 4A

  18. We have to prove, sin(θ+ϕ)2sinθ+sin(θϕ)cos(θ+ϕ)2cosθ+cos(θϕ)=tanθ\frac{\sin (\theta + \phi) - 2\sin\theta + \sin (\theta - \phi)}{\cos (\theta + \phi) - 2\cos \theta + \cos(\theta - \phi)} = \tan\theta

    Pairing first and last term in both numerator and denominator, we get

    L.H.S. =2sinθcosϕ+2sinθ2cosθcosϕ+2cosθ= \frac{2\sin\theta\cos\phi + 2\sin\theta}{2\cos\theta\cos\phi + 2\cos\theta}

    =2sinθ(cosϕ+1)2cosθ(cosϕ+1)= \frac{2\sin\theta(\cos\phi + 1)}{2\cos\theta(\cos\phi + 1)}

    =tanθ= \tan\theta

  19. We have to prove that, sinA+2sin3A+sin5Asin3A+2sin5A+sin7A=sin3Asin5A\frac{\sin A + 2\sin 3A + \sin 5A}{\sin 3A + 2\sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}

    Pairing first and last term in both numerator and denominator, we get

    L.H.S. =2sin3Acos2A+2sin3A2sin5Acos2A+2sin5A= \frac{2\sin3A\cos2A + 2\sin3A}{2\sin5A\cos2A + 2\sin5A}

    =sin3A(cos2A+1)sin5A(cos2A+1)= \frac{\sin3A(\cos 2A + 1)}{\sin5A(\cos 2A + 1)}

    =sin3Asin5A= \frac{\sin 3A}{\sin 5A}

  20. We have to prove that, sin(AC)+2sinA+sin(A+C)sin(BC)+2sinB+sin(B+C)=sinAsinB\frac{\sin(A - C) + 2\sin A + \sin(A + C)}{\sin (B - C) + 2\sin B + \sin(B + C)} = \frac{\sin A}{\sin B} Pairing first and last term in both numerator and denominator, we get

    L.H.S. =2sinAcosC+2sinA2sinBcosC+2sinB= \frac{2\sin A\cos C + 2\sin A}{2\sin B\cos C + 2\sin B}

    =sinA(cosC+1)sinB(cosC+1)= \frac{\sin A(\cos C + 1)}{\sin B(\cos C + 1)}

    =sinAsinB= \frac{\sin A}{\sin B}

  21. We have to prove that, sinAsin5A+sin9Asin13AcosAcos5Acos9A+cos13A=cot4A\frac{\sin A - \sin 5A + \sin 9A - \sin 13A}{\cos A - \cos 5A - \cos 9A + \cos 13 A} = \cot 4A

    Pairing first and last term and second and third term in both numerator and denominator, we get

    L.H.S. =2cos7Asin6A+2cos7Asin2A3cos7Acos6A2cos7Acos2A= \frac{-2\cos7A\sin6A + 2\cos7A\sin 2A}{3\cos7A\cos6A - 2\cos7A\cos2A}

    =2cos7A(sin2Asin6A)2cos7A(cos6Acos2A)= \frac{2\cos7A(\sin 2A - \sin 6A)}{2\cos 7A(\cos 6A - \cos 2A)}

    =2cos4Asin2A2sin4Asin2A= \frac{-2\cos 4A\sin 2A}{-2\sin 4A\sin 2A}

    =cot4A= \cot 4A

  22. We have to prove that, sinA+sinBsinAsinB=tanA+B2cotAB2\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \frac{A + B}{2}\cot \frac{A - B}{2}

    L.H.S. =2sinA+B2cosAB22cosA+B2sinAB2= \frac{2\sin\frac{A + B}{2}\cos\frac{A - B }{2}}{2\cos\frac{A + B}{2}\sin\frac{A - B}{2}}

    =tanA+B2cotAB2= \tan \frac{A + B}{2}\cot \frac{A - B}{2}

  23. We have to prove that, cosA+cosBcosBcosA=cotA+B2cotAB2\frac{\cos A + \cos B}{\cos B - \cos A} = \cot \frac{A + B}{2}\cot \frac{A - B}{2}

    L.H.S. =2cosA+B2cosAB22sinA+B2sinAB2= \frac{2\cos\frac{A + B}{2}\cos\frac{A - B}{2}}{2\sin\frac{A + B}{2}\sin\frac{A - B}{2}}

    =cotA+B2cotAB2= \cot\frac{A + B}{2}\cot\frac{A - B}{2}

  24. We have to prove that, sinA+sinBcosA+cosB=tanA+B2\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{A + B}{2}

    L.H.S. =2sinA+B2cosAB22cosA+B2cosAB2= \frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2}}{2\cos\frac{A + B}{2}\cos\frac{A - B}{2}}

    =tanA+B2= \tan \frac{A + B}{2}

  25. We have to prove that, sinAsinBcosBcosA=cotA+B2\frac{\sin A - \sin B}{\cos B - \cos A} = \cot \frac{A + B}{2}

    L.H.S. =2cosA+B2sinAB32sinA+B2sinAB2= \frac{2\cos\frac{A + B}{2}\sin\frac{A - B}{3}}{2\sin\frac{A + B}{2}\sin\frac{A - B}{2}}

    =cotA+B2= \cot \frac{A + B}{2}

  26. We have to prove that, cos(A+B+C)+cos(A+B+C)+cos(AB+C)+cos(A+BC)sin(A+B+C)+sin(A+B+C)sin(AB+C)+sin(A+BC)=cotB\frac{\cos(A + B + C) + \cos(-A + B + C) + \cos(A - B + C) + \cos(A + B - C)}{\sin(A + B + C)+\sin(-A + B + C) - \sin(A - B + C) + \sin(A + B - C)} = \cot B

    L.H.S. =2cos(B+C)cosA+2cosAcos(BC)2sin(B+C)cosA+2sin(BC)cosA= \frac{2\cos(B + C)\cos A + 2\cos A\cos(B - C)}{2\sin(B + C)\cos A + 2\sin(B - C)\cos A}

    =cos(B+C)+cos(BC)sin(B+C)+sin(BC)= \frac{\cos(B + C) + \cos(B - C)}{\sin(B + C) + \sin(B - C)}

    =2cosBcosC2sinBcosC=cotB= \frac{2\cos B\cos C}{2\sin B\cos C} = \cot B

  27. We have to prove that, cos3A+cos5A+cos7A+cos15A=4cos4Acos5Acos6A\cos 3A + \cos 5A + \cos 7A + \cos 15A = 4 \cos 4A\cos 5A \cos 6A

    Adding first and last and two middle terms together, we gte

    L.H.S. =2cos9Acos6A+2cos6AcosA= 2\cos9A\cos6A + 2\cos6A\cos A

    =2cos6A(cos9A+cosA)= 2\cos6A(\cos9A + \cos A)

    =4cos4Acos5Acos6A= 4\cos 4A \cos 5A \cos 6A

  28. We have to prove that, cos(A+B+C)+cos(AB+C)+cos(A+BC)+cos(A+B+C)=4cosAcosBcosC\cos(-A + B + C) + \cos(A - B + C) + \cos(A + B - C) + \cos(A + B + C) = 4\cos A\cos B\cos C

    Adding first two and last two, we get

    L.H.S. =2cosCcos(BA)+2cos(A+B)cosC= 2\cos C\cos (B - A) + 2\cos (A + B)\cos C

    =2cosC(cos(BA)+cos(A+B))= 2\cos C(\cos (B - A) + \cos (A + B))

    =4cosAcosBcosC= 4\cos A\cos B\cos C

  29. We have to prove that, sin50sin70+sin10=0\sin 50^\circ - \sin 70^\circ + \sin 10^\circ = 0

    L.H.S. =2cos60sin10+sin10= -2\cos 60^\circ \sin 10^\circ + \sin 10^\circ

    =sin10+sin10=0= -\sin10^\circ + \sin10^\circ = 0

  30. We have to prove that, sin10+sin20+sin40+sin50=sin70+sin80\sin 10^\circ + \sin 20^\circ + \sin 40^\circ + \sin 50^\circ = \sin 70^\circ + \sin 80^\circ

    L.H.S. =sin10+sin50+sin20+sin40= \sin 10^\circ + \sin 50^\circ + \sin 20^\circ + \sin 40^\circ

    =2sin30cos20+2sin30cos10= 2\sin 30^\circ \cos 20^\circ + 2\sin 30^\circ \cos 10^\circ

    =2sin30(cos20+cos10)= 2\sin30^\circ(\cos 20^\circ + \cos 10^\circ)

    =sin70+sin80[cosθ=sin(90θ)]= \sin 70^\circ + \sin 80^\circ[\because \cos\theta = \sin(90^\circ - \theta)]

  31. We have to prove that, sinα+sin2α+sin4α+sin5α=4cosα2cos3α2sin3α\sin\alpha + \sin 2\alpha + \sin 4\alpha + \sin 5\alpha = 4\cos \frac{\alpha}{2}\cos \frac{3\alpha}{2}\sin 3\alpha

    L.H.S. =sinα+sin5α+sin2α+sin4α= \sin\alpha + \sin 5\alpha + \sin2\alpha + \sin4\alpha

    =2sin3αcos2α+2sin3αcosα= 2\sin3\alpha\cos2\alpha + 2\sin3\alpha\cos\alpha

    =2sin3α(cos2α+cosα)= 2\sin3\alpha(\cos2\alpha + \cos\alpha)

    =4cosα2cos3α2sin3α= 4\cos \frac{\alpha}{2}\cos \frac{3\alpha}{2}\sin 3\alpha

  32. Given, cos[θ+(n32)ϕ]cos[θ+(n+32)ϕ]\cos\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] - \cos\left[\theta + \left(n + \frac{3}{2}\right)\phi\right]

    =2sin[θ+nϕ]sin[ϕ2]= 2\sin\left[\theta + n\phi\right]\sin\left[\frac{\phi}{2}\right]

  33. Given, sin[θ+(n32)ϕ]+sin[θ+(n+32)ϕ]\sin\left[\theta + \left(n - \frac{3}{2}\right)\phi\right] + \sin\left[\theta + \left(n + \frac{3}{2}\right)\phi\right]

    =2sin[θ+nϕ]cos[ϕ2]= 2\sin\left[\theta + n\phi\right]\cos\left[\frac{\phi}{2}\right]

  34. Given, 2sin5θsin7θ2\sin5\theta\sin7\theta

    Let the angles are AA and BB then cosCcosD=2sinC+D2cosDC2\cos C - \cos D = 2\sin \frac{C + D}{2}\cos\frac{D - C}{2}

    Thus, comparing, we get

    C+D=14,DC=10C + D = 14, D - C = 10

    D=12,C=2D = 12, C = 2

    Thus, required expression is cos2θcos12θ\cos 2\theta - \cos12\theta

  35. Given, 2cos7θsin5θ2\cos7\theta\sin5\theta

    =sin12θ+sin2θ= \sin 12\theta + \sin 2\theta

  36. Given, 2cos11θcos3θ2\cos 11\theta\cos 3\theta

    =cos14θ+cos8θ= \cos 14\theta + \cos 8\theta

  37. Given, 2sin54sin662\sin54^\circ\sin66^\circ

    =cos12cos120=\cos12^\circ - \cos120^\circ

  38. We have to prove that sinθ2sin7θ2+sin3θ2sin11θ2=sin2θsin5θ\sin\frac{\theta}{2}\sin\frac{7\theta}{2} + \sin \frac{3\theta}{2}\sin\frac{11\theta}{2} =\sin 2\theta\sin 5\theta

    L.H.S. =12(cos3θcos4θ)+12(cos4θcos7θ)= \frac{1}{2}(\cos 3\theta - \cos 4\theta) + \frac{1}{2}(\cos 4\theta - \cos 7\theta)

    =sin2θ+sin5θ= \sin2\theta + \sin5\theta

  39. We have to prove that, cos2θcosθ2cos3θcos9θ2=sin5θsin5θ2\cos 2\theta\cos \frac{\theta}{2} -\cos3\theta\cos\frac{9\theta}{2} = \sin5\theta\sin\frac{5\theta}{2}

    L.H.S. =12(cos5θ2+cos3θ2)12(cos15θ2+cos3θ2)= \frac{1}{2}\left(\cos\frac{5\theta}{2} + \cos \frac{3\theta}{2}\right) - \frac{1}{2}\left(\cos \frac{15\theta}{2} + \cos \frac{3\theta}{2}\right)

    =12(2sin5θsin5θ2)= \frac{1}{2}\left(2\sin 5\theta \sin \frac{5\theta}{2}\right)

    =sin5θsin5θ2= \sin5\theta\sin\frac{5\theta}{2}

  40. We have to prove that, sinAsin(A+2B)sinBsin(B+2A)=sin(AB)sin(A+B)\sin A\sin(A + 2B) - \sin B\sin(B + 2A) = \sin(A - B)\sin(A + B)

    L.H.S. =12(2sinAsin(A+2B)2sinBsin(B+2A))= \frac{1}{2}(2\sin A\sin(A + 2B) - 2\sin B\sin(B + 2A))

    =12(cosBcos(A+B)cosAcos(A+B))= \frac{1}{2}(\cos B - \cos(A + B) - \cos A - \cos (A + B))

    =122sin(AB)sin(A+B)= \frac{1}{2}2\sin(A - B)\sin(A + B)

  41. We have to prove that, (sin3A+sinA)sinA+(cos3AcosA)cosA=0(\sin 3A + \sin A)\sin A + (\cos 3A - \cos A)\cos A = 0

    L.H.S. =2sin2AcosAsinA2sin2AsinAcosA=0= 2\sin2A\cos A\sin A - 2\sin2A\sin A\cos A = 0

  42. We have to prove that, 2sin(AC)cosCsin(A2C)2sin(BC)cosCsin(B2C)=sinAsinB\frac{2\sin(A - C)\cos C - \sin(A - 2C)}{2\sin(B - C)\cos C - \sin(B - 2C)} = \frac{\sin A}{\sin B}

    L.H.S. =sinA+sin(A2C)sin(A2C)sinB+sin(B2C)sin(B2C)= \frac{\sin A + \sin(A - 2C) - \sin(A - 2C)}{\sin B + \sin(B - 2C) - \sin(B - 2C)}

    =sinAsinB= \frac{\sin A}{\sin B}

  43. We have to prove that, sinAsin2A+sin3Asin6A+sin4Asin13AsinAcos2A+sin3Acos6A+sin4Acos13A=tan9A\frac{\sin A\sin 2A + \sin 3A\sin 6A + \sin4A\sin 13A}{\sin A\cos2A + \sin 3A\cos 6A + \sin 4A\cos 13A} = \tan 9A

    L.H.S. =cosAcos3A+cos3Acos9A+cos9Acos17Asin3AsinA+sin9Asin3A+sin17Asin9A= \frac{\cos A - \cos 3A + \cos 3A - \cos 9A + \cos 9A - \cos 17A}{\sin 3A - \sin A + \sin 9A - \sin 3A + \sin 17A - \sin 9A}

    =cosAcos17Asin17AsinA= \frac{\cos A - \cos 17A}{\sin 17A - \sin A}

    =2sin8Asin9A2cos9Asin8A=tan9A= \frac{2\sin 8A\sin 9A}{2\cos 9A\sin 8A} = \tan 9A

  44. We have to prove that, cos2Acos3Acos2Acos7A+cosAcos10Asin4Asin3Asin2Asin5A+sin4Asin7A=cot6Acot5A\frac{\cos 2A\cos 3A - \cos 2A\cos 7A + \cos A\cos 10A}{\sin 4A\sin 3A - \sin 2A\sin 5A + \sin 4A\sin 7A} =\cot 6A\cot 5A

    L.H.S. =cos5A+cosAcos9Acos5A+cos11A+cos9AcosAcos7Acos3A+cos7A+cos3Acos11A= \frac{\cos 5A + \cos A - \cos 9A - \cos 5A + \cos 11A + \cos 9A}{\cos A - \cos 7A - \cos 3A + cos 7A + \cos 3A - \cos 11A}

    =cosA+cos11AcosAcos11A= \frac{\cos A + \cos 11A}{\cos A - \cos 11A}

    =cos6Acos5Asin6Asin5A=cot6Acot5A= \frac{\cos 6A\cos 5A}{\sin 6A\sin 5A} = \cot 6A\cot 5A

  45. We have to prove that, cos(36A)cos(36+A)+cos(54+A)cos(54A)=cos2A\cos(36^\circ - A)\cos(36^\circ + A) + \cos(54^\circ + A)\cos(54^\circ - A) = \cos 2A

    L.H.S. =12(cos(72)+cos2A)+12(cos108+cos2A)= \frac{1}{2}(\cos (72^\circ)+ \cos 2A) + \frac{1}{2}(\cos 108^\circ + \cos 2A)

    =12(sin18+sin18+2cos2A)[sin18=cos(9018)=cos72= \frac{1}{2}(\sin 18^\circ + - \sin 18^\circ + 2\cos 2A)[\because \sin 18^\circ = \cos(90^\circ - 18^\circ) = \cos 72^\circ and cos108=cos(90+18)=sin18]\cos 108^\circ = \cos(90^\circ + 18^\circ) = -\sin 18^\circ]

    =cos2A= \cos 2A

  46. We have to prove that cosAsin(BC)+cosBsin(CA)+cosCsin(AB)=0\cos A\sin(B - C) + \cos B\sin(C - A) + \cos C\sin(A - B) = 0

    L.H.S. =12[sin(A+BC)sin(AB+C)+sin(B+CA)sin(BC+A)+sin(AB+C)sin(CA+B)]=0= \frac{1}{2}[\sin(A + B - C) - \sin(A - B + C) + \sin(B + C - A) - \sin (B - C + A) + \sin(A - B + C) - \sin(C - A + B)] = 0

  47. sin(45+A)sin(45A)=12cos2A\sin(45^\circ + A)\sin(45^\circ - A) = \frac{1}{2}\cos 2A

    L.H.S. =12(2sin(45+A)sin(45A))=12[cos2Acos90]=12cos2A= \frac{1}{2}(2\sin(45^\circ + A)\sin(45^\circ - A)) = \frac{1}{2}[\cos 2A - \cos 90^\circ] = \frac{1}{2}\cos 2A

  48. We have to prove that, sin(βγ)cos(αδ)+sin(γα)cos(βδ)+sin(αβ)cos(γδ)=0\sin(\beta - \gamma)\cos(\alpha - \delta) + \sin(\gamma - \alpha)\cos(\beta - \delta) + \sin(\alpha - \beta)\cos(\gamma - \delta) = 0

    L.H.S. =12[sin(α+βγδ)+sin(β+δγα)+sin(γα+βδ)+sin(γαβ+δ)+sin(αβ+γδ)sin(αβγ+δ)]= \frac{1}{2}[\sin(\alpha + \beta - \gamma - \delta) + \sin(\beta + \delta - \gamma - \alpha) + \sin(\gamma -\alpha + \beta - \delta) + \sin(\gamma - \alpha - \beta + \delta) + \sin(\alpha - \beta + \gamma - \delta) - \sin(\alpha - \beta - \gamma + \delta)]

    =0= 0

  49. We have to prove that, 2cosπ13cos9π13+cos3π13+cos5π13=02\cos\frac{\pi}{13}\cos \frac{9\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} = 0

    L.H.S. =cos10π13+cos8π13+cos(π10π13)+cos(π8π13)=\cos \frac{10\pi}{13} + \cos \frac{8\pi}{13} + \cos \left(\pi - \frac{10\pi}{13}\right) + \cos \left(\pi - \frac{8\pi}{13}\right)

    =cos10π13+cos8π13cos10π13cos8π13=0= \cos \frac{10\pi}{13} + \cos \frac{8\pi}{13} - \cos \frac{10\pi}{13} - \cos \frac{8\pi}{13} = 0

  50. We have to prove that, cos55+cos65+cos175=0\cos 55^\circ + \cos65^\circ + \cos 175^\circ = 0

    L.H.S. =2cos60cos5+cos(1805)= 2\cos 60^\circ\cos5^\circ + \cos(180^\circ - 5^\circ)

    =2.12.cos5cos5=0= 2.\frac{1}{2}.\cos5^\circ - \cos 5^\circ = 0

  51. We have to prove that, cos18sin18=2sin27\cos 18^\circ -\sin 18^\circ = \sqrt{2}\sin 27^\circ

    L.H.S. =cos18cos(9072)=cos18cos72= \cos18^\circ - \cos(90^\circ - 72^\circ) = \cos 18^\circ - \cos 72^\circ

    =2sin45sin27=2sin27= 2\sin 45^\circ\sin 27^\circ = \sqrt{2}\sin27^\circ

  52. We have to prove that, sinA+sin2A+sin4A+sin5AcosA+cos2A+cos4A+cos5A=tan3A\frac{\sin A + \sin 2A + \sin 4A + \sin 5A}{\cos A + \cos 2A + \cos 4A + \cos 5A} = \tan 3A

    L.H.S. =(sin5A+sinA)+(sin4A+sin2A)(cos5A+cosA)+(cos4A+cos2A)= \frac{(\sin 5A + \sin A) + (\sin 4A + \sin 2A)}{(\cos 5A + \cos A) + (\cos 4A + \cos 2A)}

    =2sin3Acos2A+2sin3AcosA2cos3Acos2A+2cos3AcosA= \frac{2\sin 3A\cos 2A + 2\sin 3A\cos A}{2\cos3A\cos2A + 2\cos 3A\cos A}

    =sin3A(cos2A+cosA)cos3A(cos2A+cosA)=tan3A= \frac{\sin 3A(\cos 2A + \cos A)}{\cos 3A(\cos 2A + \cos A)} = \tan 3A

  53. L.H.S =(2cosA+B2cosAB22cosA+B2sinAB2)n+(2sinA+B2cosAB22sinA+B2sinBA2)n= \left(\frac{2\cos \frac{A + B}{2}\cos \frac{A - B}{2}}{2\cos\frac{A + B}{2}\sin\frac{A - B}{2}}\right)^n + \left(\frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2}}{2\sin\frac{A + B}{2}\sin\frac{B - A}{2}}\right)^n

    =(cosAB2)n+(cotAB2)n= \left(\cos\frac{A - B}{2}\right)^n + \left(-\cot\frac{A - B}{2}\right)^n

    =cotnAB2[1+(1)n]=\cot^n\frac{A - B}{2}[1 + (-1)^n] which is 00 if nn is odd and 2cosnAB22\cos^n\frac{A - B}{2} if nn is even.

  54. Given α,β,γ\alpha, \beta, \gamma are in A.P. 2β=α+γ\therefore 2\beta = \alpha + \gamma

    R.H.S. =sinαsinγcosγcosα=2cosα+γ2sinαγ22sinγ+α2sinαγ2= \frac{\sin\alpha - \sin\gamma}{\cos\gamma - \cos\alpha} = \frac{2\cos \frac{\alpha + \gamma}{2}\sin\frac{\alpha - \gamma}{2}}{2\sin\frac{\gamma + \alpha}{2}\sin\frac{\alpha - \gamma}{2}}

    =cotα+γ2=cotβ= \cot\frac{\alpha + \gamma}{2} = \cot\beta

  55. Given sinθ+sinϕ=3(cosϕcosθ)\sin\theta + \sin\phi = \sqrt{3}(\cos\phi - \cos\theta)

    2sinθ+ϕ2cosθϕ2=3.2.sinθ+ϕ2sinθϕ22\sin\frac{\theta + \phi}{2}\cos\frac{\theta - \phi}{2} = \sqrt{3}.2.\sin\frac{\theta + \phi}{2}\sin\frac{\theta - \phi}{2}

    =sinθ+ϕ2[cosθϕ23sinθϕ]=0= \sin\frac{\theta + \phi}{2}\left[\cos\frac{\theta - \phi}{2} - \sqrt{3}\sin\frac{\theta - \phi}{}\right] = 0

    sinθ+ϕ2=0\therefore \sin\frac{\theta + \phi}{2} = 0 or tanθϕ2=13\tan\frac{\theta - \phi}{2} = \frac{1}{\sqrt{3}}

    θ+ϕ=0\therefore \theta + \phi = 0^\circ or θϕ=60\theta - \phi = 60^\circ

    Now, sin3θ+sin3ϕ=2sin3(θ+ϕ)2sin3(θϕ)2=0\sin3\theta + \sin3\phi = 2\sin\frac{3(\theta + \phi)}{2}\sin\frac{3(\theta - \phi)}{2} = 0

    [\because when θ+ϕ=0;sin3(θ+ϕ)2=0\theta + \phi = 0; \sin\frac{3(\theta + \phi)}{2} = 0 and when θϕ=60;cos3(θϕ)2=0\theta - \phi = 60^\circ; \cos\frac{3(\theta - \phi)}{2} = 0 ]

  56. We have to prove that sin65+cos65=2cos20\sin 65^\circ + cos 65^\circ = \sqrt{2}\cos 20^\circ

    L.H.S. =cos(9065)+cos65=cos25cos65= \cos(90^\circ - 65^\circ) + \cos 65^\circ = \cos 25^\circ\cos65^\circ

    =2cos45cos20=2.12cos20=2cos20= 2\cos 45^\circ\cos20^\circ = 2.\frac{1}{\sqrt{2}}\cos20^\circ = \sqrt{2}\cos20^\circ

  57. We have to prove that sin47+cos77=cos17\sin 47^\circ + \cos 77^\circ = \cos 17^\circ

    L.H.S. =cos(9047)+cos77= \cos(90^\circ - 47^\circ) + \cos 77^\circ

    =cos43+cos77= \cos 43^\circ + \cos77^\circ

    =2cos60cos17=2\cos 60^\circ \cos 17^\circ

    =cos17[2cos60=2.12=1= \cos 17^\circ[\because 2\cos60^\circ = 2.\frac{1}{2} = 1

  58. We have to prove that, cos10sin10cos10+sin10=tan35\frac{\cos 10^\circ - \sin 10^\circ}{\cos 10^\circ + \sin 10^\circ} = \tan 35^\circ

    L.H.S. =cos10cos(9010)cos10+cos(9010)= \frac{\cos10^\circ - \cos(90^\circ - 10^\circ)}{\cos10^\circ + \cos(90^\circ - 10^\circ)}

    =cos10cos80cos10+cos80= \frac{\cos10^\circ - \cos80^\circ}{\cos10^\circ + \cos80^\circ}

    =2cos45cos352cos45cos35=tan35= \frac{2\cos45^\circ\cos35^\circ}{2\cos45^\circ\cos35^\circ} = \tan 35^\circ

  59. We have to prove that, cos80+cos40cos20=0\cos 80^\circ + \cos 40^\circ - cos 20^\circ = 0

    L.H.S. =2cos60cos20cos20= 2\cos60^\circ\cos20^\circ - \cos20^\circ

    =cos20cos20[2cos60=2.12=1]= \cos20^\circ - \cos20^\circ[\because 2\cos60^\circ = 2.\frac{1}{2} = 1]

  60. We have to prove that cosπ5+cos2π5+cos6π5+cos7π5=0\cos\frac{\pi}{5} + \cos \frac{2\pi}{5} + \cos\frac{6\pi}{5} + \cos \frac{7\pi}{5} = 0

    L.H.S. =cos7π5+cosπ5+cos2π5+cos6π5= \cos\frac{7\pi}{5} + \cos\frac{\pi}{5} + \cos\frac{2\pi}{5} + \cos\frac{6\pi}{5}

    =2cos4π5cos3π5+2cos4π5cos2π5= 2\cos\frac{4\pi}{5}\cos\frac{3\pi}{5} + 2\cos\frac{4\pi}{5}\cos\frac{2\pi}{5}

    =2cos4π5[cos3π5+cos(π3π5)]= 2\cos\frac{4\pi}{5}\left[\cos\frac{3\pi}{5} + \cos \left(\pi - \frac{3\pi}{5}\right)\right]

    =2cos4π5(cos3π5cos3π5)=0= 2\cos\frac{4\pi}{5}\left(\cos\frac{3\pi}{5} - \cos \frac{3\pi}{5}\right) = 0

  61. We have to prove that cosα+cosβ+cosγ+cos(α+β+γ)=4cosα+β2cosβ+γ2cosγ+α2\cos\alpha + \cos\beta + \cos\gamma + \cos(\alpha + \beta + \gamma) = 4\cos\frac{\alpha + \beta}{2}\cos\frac{\beta + \gamma}{2}\cos \frac{\gamma + \alpha}{2}

    L.H.S. =cos(α+β+γ)+cosα+cosβ+cosγ= \cos(\alpha + \beta + \gamma) + \cos\alpha + \cos\beta + \cos\gamma

    =2cos(α+β+γ2)cosβ+γ2+2cosβ+γ2cosβγ2= 2\cos\left(\alpha + \frac{\beta + \gamma}{2}\right)\cos\frac{\beta + \gamma}{2} + 2\cos\frac{\beta+\gamma}{2}\cos\frac{\beta - \gamma}{2}

    =2cosβ+γ2[2cos(α+β+γ2)+cosβγ2]= 2\cos\frac{\beta + \gamma}{2}\left[2\cos\left(\alpha +\frac{\beta + \gamma}{2}\right) + \cos\frac{\beta - \gamma}{2}\right]

    =4cosα+β2cosβ+γ2cosγ+α2=4\cos\frac{\alpha + \beta}{2}\cos\frac{\beta + \gamma}{2}\cos \frac{\gamma + \alpha}{2}

  62. Given, sinαsinβ=13\sin\alpha - \sin\beta = \frac{1}{3} and cosbeta - cosalpha = frac{1}{2}

    Dividing we get, sinαsinβcosβcosα=23\frac{\sin\alpha - \sin\beta}{\cos\beta - \cos\alpha} = \frac{2}{3}

    2cosα+β2sinαβ22sinα+β2sinαβ2=23\Rightarrow \frac{2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}}{2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}} = \frac{2}{3}

    cotα+β2=23\Rightarrow \cot\frac{\alpha + \beta}{2} = \frac{2}{3}

  63. Given, cosecA+secA=cosecB+secB\cosec A + sec A = \cosec B + \sec B

    secAsecB=cosecBcosecA\sec A - \sec B = \cosec B - \cosec A

    cosBcosAcosAcosB=sinAsinBsinAsinB\Rightarrow \frac{\cos B - \cos A}{\cos A\cos B} = \frac{\sin A - \sin B}{\sin A\sin B}

    2sinA+B2sinAB2cosAcosB=2cosA+B2sinAB2sinAsinB\Rightarrow \frac{2\sin\frac{A + B}{2}\sin \frac{A - B}{2}}{\cos A\cos B} = \frac{2\cos\frac{A + B}{2}\sin\frac{A - B}{2}}{\sin A\sin B}

    tanAtanB=cotA+B2\Rightarrow \tan A\tan B = \cot \frac{A + B}{2}

  64. Given, sec(θ+α)+sec(θα)=2secθ\sec(\theta + \alpha) + \sec(\theta - \alpha) = 2\sec\theta

    1cos(θ+α)+1cos(θα)=2cosθ\Rightarrow \frac{1}{\cos(\theta + \alpha)} + \frac{1}{\cos(\theta - \alpha)} = \frac{2}{\cos\theta}

    cosθ[cos(θα)+cos(θ+α)]=2cos(θ+α)cos(θα)\cos\theta[\cos(\theta - \alpha) + \cos(\theta + \alpha)] = 2\cos(\theta + \alpha)\cos(\theta - \alpha)

    cosθ.2cosθcosα=cos2θ+cos2α\cos\theta.2\cos\theta\cos\alpha = \cos2\theta + \cos2\alpha

    We know that [cos(theta + theta) = costheta.costheta - sinthetasintheta = 2cos^2theta - 1]

    Thus, the above equation becomes

    2cos2θcosα=2cos2θ1+2cos2α12\cos^2\theta\cos\alpha = 2\cos^2\theta - 1 + 2\cos^2\alpha - 1

    2cos2θ(cosα1)=2(cos2α1)2\cos^2\theta(\cos\alpha - 1) = 2(\cos^2\alpha - 1)

    cos2θ=1+cosα\Rightarrow \cos^2\theta = 1 + \cos\alpha

  65. We have to prove that sin50cos85=12sin3522\sin50^\circ\cos85^\circ = \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}

    L.H.S. =12[sin(85+sin50)sin(8550)]= \frac{1}{2}[\sin(85^\circ + \sin50^\circ) - \sin(85^\circ - 50^\circ)]

    =12[sin135sin35]= \frac{1}{2}[\sin135^\circ - \sin35^\circ]

    =12[12sin35]= \frac{1}{2}\left[\frac{1}{\sqrt{2}} - \sin35^\circ\right]

    =12sin3522= \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}

  66. We have to prove that, sin20sin40sin80=38\sin 20^\circ \sin 40^\circ\sin 80^\circ = \frac{\sqrt{3}}{8}

    L.H.S. =12(2sin80sin40)sin20= \frac{1}{2}(2\sin80^\circ\sin40^\circ)\sin20^\circ

    =12[cos(8040)cos(80+40)]sin20= \frac{1}{2}[\cos(80^\circ - 40^\circ) - \cos(80^\circ + 40^\circ)]\sin20^\circ

    =12(cos40cos120)sin206= \frac{1}{2}(\cos40^\circ - \cos120^\circ)\sin 206\circ

    =14(2cos40sin202cos120sin20)= \frac{1}{4}(2\cos40^\circ\sin20^\circ - 2\cos120^\circ\sin20^\circ)

    =14[sin(40+20)sin(4020)2.12sin20]= \frac{1}{4}[\sin(40^\circ + 20^\circ) - \sin(40^\circ - 20^\circ) - 2.-\frac{1}{2}\sin20^\circ]

    =14[sin60sin20+sin20]=14sin60=38= \frac{1}{4}[\sin60^\circ - \sin20^\circ + \sin20^\circ] = \frac{1}{4}\sin60^\circ = \frac{\sqrt{3}}{8}

  67. We have to prove that, sinAsin(60A)sin(60+A)=14sin3A\sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A

    L.H.S. =12sinA[2sin(60A)sin(60+A)]= \frac{1}{2}\sin A[2\sin(60^\circ - A)\sin(60^\circ + A)]

    =12sinA[cos(60+A60+A)cos(60+A+60A)]= \frac{1}{2}\sin A[\cos(60^\circ + A - 60^\circ + A) - \cos(60^\circ + A + 60^\circ - A)]

    =12sinA(cos2Acos120)= \frac{1}{2}\sin A(\cos 2A - \cos 120^\circ)

    =14(2sinAcos2A2cos120sinA)= \frac{1}{4}(2\sin A\cos 2A - 2\cos 120^\circ \sin A)

    14[sin(2A+A)sin(2AA)2.12sinA]\frac{1}{4}[\sin (2A + A) - \sin(2A - A) - 2.-\frac{1}{2}\sin A]

    =14(sin3AsinA+sinA)=14sin3A= \frac{1}{4}(\sin 3A - \sin A + \sin A) = \frac{1}{4}\sin 3A

  68. Let p=sinαsinβp = \sin\alpha\sin\beta

    =122sinαsinβ= \frac{1}{2}2\sin\alpha\sin\beta

    =12[cos(αβ)cos(α+beta)]= \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + beta)]

    =12[cos(αβ)cos90][α+β=90 (given)]= \frac{1}{2}[\cos(\alpha - \beta) - \cos90^\circ][\because \alpha + \beta = 90^\circ~\text{(given)}]

    =12cos(αβ)= \frac{1}{2}\cos(\alpha - \beta)

    Maximum value of cos(αβ)\cos(\alpha - \beta) is 1,1, hence maximum value of pp is 12\frac{1}{2}

  69. We have to prove that, sin25cos115=12(sin401)\sin 25^\circ\cos 115^\circ = \frac{1}{2}(\sin 40^\circ - 1)

    L.H.S. =sin25cos115= \sin 25^\circ\cos 115^\circ

    =122sin25cos115=12[sin140sin90]= \frac{1}{2}2\sin25^\circ\cos115^\circ = \frac{1}{2}[\sin140^\circ - \sin90^\circ]

    =12[cos501]=12[sin401]= \frac{1}{2}[\cos50^\circ - 1] = \frac{1}{2}[\sin40^\circ - 1]

  70. We have to prove that, sin20sin40sin60sin80=316\sin 20^\circ \sin 40^\circ\sin 60^\circ \sin80^\circ = \frac{3}{16}

    L.H.S. =12[(2sin20sin80)(sin40sin60)]= \frac{1}{2}[(2\sin 20^\circ\sin80^\circ)(\sin40^\circ\sin60^\circ)]

    =12(cos60cos100)32sin40= \frac{1}{2}(\cos60^\circ - \cos100^\circ)\frac{\sqrt{3}}{2}\sin40^\circ

    =34[cos60sin40+sin10sin40]= \frac{\sqrt{3}}{4}[\cos60^\circ\sin40^\circ + \sin10^\circ\sin40^\circ]

    =38[2cos60sin40+2cos80sin40]= \frac{\sqrt{3}}{8}[2\cos60^\circ\sin40^\circ + 2\cos80^\circ\sin40^\circ]

    =38[sin100sin20+sin120sin40]= \frac{\sqrt{3}}{8}[\sin100^\circ - \sin 20^\circ + \sin 120^\circ - \sin 40^\circ]

    =38[cos10(sin20+sin40)+cos30]= \frac{\sqrt{3}}{8}[\cos10^\circ - (\sin20^\circ + \sin40^\circ) + \cos30^\circ]

    =38[cos102sin30cos10+32]= \frac{\sqrt{3}}{8}[\cos10^\circ - 2\sin30^\circ\cos10^\circ + \frac{\sqrt{3}}{2}]

    =38[cos102.12.cos10+32]=316= \frac{3}{8}[\cos10^\circ - 2.\frac{1}{2}.\cos10^\circ + \frac{3}{2}] = \frac{3}{16}

  71. We have to prove that, cos20cos40cos80=18\cos 20^\circ\cos40^\circ\cos80^\circ = \frac{1}{8}

    L.H.S. =12cos20cos80cos40= \frac{1}{2\cos20^\circ\cos80^\circ}\cos40^\circ

    =12[cos100+cos60]cos40= \frac{1}{2}[\cos100^\circ + \cos60^\circ]\cos40^\circ

    =12[sin10cos40+12cos40]= \frac{1}{2}[-\sin10^\circ\cos40^\circ + \frac{1}{2}\cos40^\circ]

    =14[2cos40sin10+cos40]= \frac{1}{4}[-2\cos40^\circ\sin10^\circ + \cos40^\circ]

    =14[sin50+sin30+cos40]= \frac{1}{4}[-\sin50^\circ + sin30^\circ + \cos40^\circ]

    =18[sin50=cos40 and sin30=12]= \frac{1}{8}[\because \sin50^\circ = \cos40^\circ~\text{and}~\sin30^\circ = \frac{1}{2}]

  72. We have to prove that, tan20tan40tan60tan80=3\tan20^\circ\tan40^\circ\tan60^\circ\tan80^\circ = 3

    Using results of 70 and 71 it can be solved.

  73. We have to prove that, cos10cos30cos50cos70=316\cos10^\circ\cos30^\circ\cos50^\circ\cos70^\circ = \frac{3}{16}

    L.H.S. =12(2cos10cos70)(32cos50)= \frac{1}{2}(2\cos10^\circ\cos70^\circ)(\frac{\sqrt{3}}{2}\cos50^\circ)

    =34[cos80+cos60]cos50= \frac{\sqrt{3}}{4}[\cos80^\circ + \cos60^\circ]\cos50^\circ

    =34[cos80cos50+12cos50]= \frac{\sqrt{3}}{4}[\cos80^\circ\cos50^\circ + \frac{1}{2}\cos50^\circ]

    =38[2cos80cos50+cos50]= \frac{\sqrt{3}}{8}[2\cos80^\circ\cos50^\circ + \cos50^\circ]

    =38[cos130+cos30+cos50]= \frac{\sqrt{3}}{8}[\cos 130^\circ + \cos30^\circ + \cos50^\circ]

    =38[cos(18050)+cos30+cos50]= \frac{\sqrt{3}}{8}[\cos(180^\circ - 50^\circ) + \cos30^\circ + \cos50^\circ]

    =316= \frac{3}{16}

  74. We have to prove that, 4cosθcos(π3+θ)cos(π3θ)=cos3θ4\cos\theta\cos\left(\frac{\pi}{3} + \theta\right)\cos\left(\frac{\pi}{3} - \theta\right) = \cos3\theta

    L.H.S. =2cosθ.2cos(π3+θ)cos(π3θ)= 2\cos\theta.2\cos\left(\frac{\pi}{3} + \theta\right)\cos\left(\frac{\pi}{3} - \theta\right)

    =2cosθ[cos(2π3)+cos2θ]= 2\cos\theta\left[\cos\left(\frac{2\pi}{3}\right) + \cos2\theta\right]

    =cosθ+2cosθcos2θ=cosθ+cos3θ+cosθ=cos3θ= -\cos\theta + 2\cos\theta\cos2\theta = -\cos\theta + \cos3\theta + \cos\theta = \cos3\theta

  75. We have to prove that tanθtan(60θ)tan(60+θ)=tan3θ\tan\theta\tan(60^\circ - \theta)\tan(60^\circ + \theta) = \tan3\theta

    We have just proven, 4cosθcos(π3+θ)cos(π3θ)=cos3θ4\cos\theta\cos\left(\frac{\pi}{3} + \theta\right)\cos\left(\frac{\pi}{3} - \theta\right) = \cos3\theta

    Let us evaluate sinθsin(60θ)sin(60+θ)\sin\theta\sin(60^\circ - \theta)\sin(60^\circ + \theta)

    =12sinθ.2sin(60θ)sin(60+θ)= \frac{1}{2}\sin\theta.2\sin(60^\circ - \theta)\sin(60^\circ + \theta)

    =12sinθ[cos2θcos2π3]= \frac{1}{2}\sin\theta\left[\cos2\theta - \cos\frac{2\pi}{3}\right]

    =12sinθcos2θ+14sinθ= \frac{1}{2}\sin\theta\cos2\theta + \frac{1}{4}\sin\theta

    =14(sin3θsinθ)+14sinθ= \frac{1}{4}(\sin3\theta - \sin\theta) + \frac{1}{4}\sin\theta

    =14sin3θ= \frac{1}{4}\sin3\theta

    Thus, we have the desired result.

  76. Let p=cosαcosβp = \cos\alpha\cos\beta

    =122cosαcosβ=12[cos(α+β)+cos(αβ)]= \frac{1}{2}2\cos\alpha\cos\beta = \frac{1}{2}\left[\cos(\alpha + \beta) + \cos(\alpha - \beta)\right]

    =12cos(αβ)[α+β=90cos(α+β)=0]= \frac{1}{2}\cos(\alpha - \beta)[\because \alpha + \beta = 90^\circ \therefore \cos(\alpha + \beta) = 0]

    Now maximum value of cos(αβ)\cos(\alpha - \beta) is 11 therefore maximum value of pp is 12\frac{1}{2}

  77. Since cosα=12,\cos\alpha = \frac{1}{\sqrt{2}}, therefore α\alpha lies either in first quadrant or fourth quadrant. So sinα=±12\sin\alpha = \pm\frac{1}{\sqrt{2}}

    We have to compute tanα+β2cotαβ2=5+26\tan\frac{\alpha + \beta}{2}\cot\frac{\alpha - \beta}{2} = 5 + 2\sqrt{6}

    =sinα+β2cosαβ2cosα+β2sinαβ2= \frac{\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}}{\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}}

    =sinα+sinβsinαsinβ= \frac{\sin\alpha + \sin\beta}{\sin\alpha - \sin\beta}

    Substituting the two pair of values, we get the desired answer.

  78. Let xcosθ=ycos(θ+2π3)=zcos(θ+4π3)=kx\cos\theta = y\cos\left(\theta + \frac{2\pi}{3}\right) = z\cos\left(\theta + \frac{4\pi}{3}\right) = k

    Let p=kx+ky+kzp = \frac{k}{x} + \frac{k}{y} + \frac{k}{z}

    =cosθ+cos(θ+2π3)+cos(θ+4π3)= \cos\theta + \cos\left(\theta + \frac{2\pi}{3}\right) + \cos\left(\theta + \frac{4\pi}{3}\right)

    =cosθ+2cos(θ+π)cosπ3=0[cosπ3=12 and cos(θ+π)=cosθ]= \cos\theta + 2\cos(\theta + \pi)\cos\frac{\pi}{3} = 0[\because \cos\frac{\pi}{3} = \frac{1}{2}~\text{and}~\cos(\theta + \pi) = -\cos\theta]

    Thus, xy+yz+zx=0xy + yz + zx = 0

  79. Given, sinθ=nsin(θ+2α)\sin\theta = n\sin(\theta + 2\alpha)

    1n=sin(θ+2α)sinθ\Rightarrow \frac{1}{n} = \frac{\sin(\theta + 2\alpha)}{\sin\theta}

    Using componendo and dividendo

    1+n1n=sin(θ+2α)+sinθsin(θ+2α)sinθ\Rightarrow \frac{1 + n}{1 - n} = \frac{\sin(\theta + 2\alpha) + \sin\theta}{\sin(\theta + 2\alpha) - \sin\theta}

    =sin(θ+α)cosαcos(θ+α)sinα= \frac{\sin(\theta + \alpha)\cos\alpha}{\cos(\theta + \alpha)\sin\alpha}

    =tan(θ+α)cotα= \tan(\theta + \alpha)\cot\alpha

  80. Given, sin(θ+α)cos(θα)=1m1+m\frac{\sin(\theta + \alpha)}{\cos(\theta - \alpha)} = \frac{1 - m}{1 + m}

    Using componendo and dividendo

    sin(θ+α)+cos(θα)sin(θ+α)cos(θα)=1m+1+m1m1m\Rightarrow \frac{\sin(\theta + \alpha) + \cos(\theta - \alpha)}{\sin(\theta + \alpha) - \cos(\theta - \alpha)} = \frac{1 - m + 1 + m}{1 - m - 1 - m}

    sin(θ+α)+sin(π2(θα))sin(θ+α)sin(π2(θα))=22m=1m\Rightarrow \frac{\sin(\theta + \alpha) + \sin\left(\frac{\pi}{2} - (\theta - \alpha)\right)}{\sin(\theta + \alpha) - \sin\left(\frac{\pi}{2} - (\theta - \alpha)\right)} = \frac{2}{-2m} = \frac{-1}{m}

    sin(π4+α)cos(θπ4)cos(π4+α)sin(θπ4)=1m\Rightarrow \frac{\sin\left(\frac{\pi}{4} + \alpha\right)\cos\left(\theta - \frac{\pi}{4}\right)}{\cos\left(\frac{\pi}{4} + \alpha\right)\sin\left(\theta - \frac{\pi}{4}\right)} = -\frac{1}{m}

    m=tan(π4θ)tan(π4α)\Rightarrow m = \tan\left(\frac{\pi}{4} - \theta\right)\tan\left(\frac{\pi}{4} - \alpha\right)

  81. Given, ysinϕ=xsin(2θ+ϕ)y\sin\phi = x\sin(2\theta + \phi)

    sinϕsin(2θ+ϕ)=xy\frac{\sin\phi}{\sin(2\theta + \phi)} = \frac{x}{y}

    By componendo and dividendo

    sinϕ+sin(2θ+ϕ)sin(2θ+ϕ)sinϕ=x+yyx\frac{\sin\phi + \sin(2\theta + \phi)}{\sin(2\theta + \phi) - \sin\phi} = \frac{x + y}{y - x}

    2sin(θ+ϕ)cosθ2cos(θ+ϕ)sinθ=x+yyx\Rightarrow \frac{2\sin(\theta + \phi)\cos\theta}{2\cos(\theta + \phi)\sin\theta} = \frac{x + y}{y - x}

    cotθcot(θ+ϕ)=x+yyx\Rightarrow \frac{\cot\theta}{\cot(\theta + \phi)} = \frac{x + y}{y - x}

    Hence, proven.

  82. Given, cos(α+β)sin(γ+δ)=cos(αbeta)sin(γδ)\cos(\alpha + \beta)\sin(\gamma + \delta) = \cos(\alpha - beta)\sin(\gamma - \delta)

    cos(α+β)cos(αβ)=sin(γδ)sin(γ+δ)\Rightarrow \frac{\cos(\alpha + \beta)}{\cos(\alpha - \beta)} = \frac{\sin(\gamma - \delta)}{\sin(\gamma + \delta)}

    By componendo and dividendo

    cos(α+β)+cos(αβ)cos(αβ)cos(α+β)=sin(γδ)+sin(γ+δ)sin(γ+δ)sin(γδ)\Rightarrow \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{\cos(\alpha - \beta) - \cos(\alpha + \beta)} = \frac{\sin(\gamma - \delta) + \sin(\gamma + \delta)}{\sin(\gamma + \delta) - \sin(\gamma - \delta)}

    2cosαcosβ2sinαsinβ=2sinγcosδ2cosγsinδ\Rightarrow \frac{2\cos\alpha\cos\beta}{2\sin\alpha\sin\beta} = \frac{2\sin\gamma\cos\delta}{2\cos\gamma\sin\delta}

    cotαcotβ=cotδcosγ\Rightarrow \cot\alpha\cot\beta = \frac{\cot\delta}{\cos\gamma}

    Hence, proven.

83, 84 and 85 can be solved by using componendo and dividendo as well.