13. Multiple and Submultiple Angles Solutions#

  1. Let us solve these one by one.

    1. Given, cosA=35\cos A = \frac{3}{5}

      sinA=1cos2A=1925=1625=45\Rightarrow \sin A = \sqrt{1 - \cos^2A} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}

      sin2A=2sinAcosA=2.45.35=2425\sin 2A = 2\sin A\cos A = 2.\frac{4}{5}.\frac{3}{5} = \frac{24}{25}

    2. Given, sinA=1213\sin A = \frac{12}{13}

      cosA=1sin2A=1144169=25169=513\Rightarrow \cos A = \sqrt{1 - \sin^2A} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}

      sin2A=2sinAcosA=2.1213.513=120169\sin 2A = 2\sin A\cos A = 2.\frac{12}{13}.\frac{5}{13} = \frac{120}{169}

    3. Given, tanA=1663=perpendicularbase\tan A = \frac{16}{63} = \frac{\text{perpendicular}}{\text{base}}

      hypotenuse=p2+b2=162+632=65\text{hypotenuse} = \sqrt{p^2 + b^2} = \sqrt{16^2 + 63^2} = 65

      sinA=1665,cosA=6365\sin A = \frac{16}{65}, \cos A = \frac{63}{65}

      sin2A=2sinAcosA=2.1665.6365=20164225\sin 2A = 2\sin A\cos A = 2.\frac{16}{65}.\frac{63}{65} = \frac{2016}{4225}

  2. Let us solve these one by one.

    1. Given, cosA=1517\cos A = \frac{15}{17}

      sinA=1cos2A\Rightarrow \sin A = \sqrt{1 - \cos^2A} =1225289=64289=817= \sqrt{1 - \frac{225}{289}} = \sqrt{\frac{64}{289}} = \frac{8}{17}

      cos2A=cos2Asin2A=22564289=161289\cos 2A = \cos^2A - \sin^2A = \frac{225 - 64}{289} = \frac{161}{289}

    2. Given, sinA=45\sin A = \frac{4}{5}

      cosA=1sin2A\Rightarrow \cos A = \sqrt{1 - \sin^2A} =11625=35= \sqrt{1 - \frac{16}{25}} = \frac{3}{5}

      cos2A=cos2Asin2A=91625=725\cos2A = \cos^2A - \sin^2A = \frac{9 - 16}{25} = -\frac{7}{25}

    3. Give, tanA=512=perpendicularbase\tan A = \frac{5}{12} = \frac{\text{perpendicular}}{\text{base}}

      hypotenuse=p2+b2=25+144=13\text{hypotenuse} = \sqrt{p^2 + b^2} = \sqrt{25 + 144} = 13

      sinA=513,cosA=1213\sin A = \frac{5}{13}, \cos A = \frac{12}{13}

      cos2A=cos2Asin2A=119169\cos^2A = \cos^2A - \sin^2A = \frac{119}{169}

  3. Given, tanA=ba,\tan A = \frac{b}{a}, thus hypotenuse=b2+a2\text{hypotenuse} = \sqrt{b^2 + a^2}

    acos2A+bsin2A=a(cos2Asin2A)+2bsinAcosAa\cos 2A+ b\sin 2A = a(\cos^2A - \sin^2A) + 2b\sin A\cos A

    =a(a2a2+b2b2a2+b2)+2b.aba2+b2= a\left(\frac{a^2}{a^2 + b^2} - \frac{b^2}{a^2 + b^2}\right) + 2b.\frac{ab}{a^2 + b^2}

    =a(a2b2+2b2a2+b2)=a= a\left(\frac{a^2 - b^2 + 2b^2}{a^2 + b^2}\right) = a

  4. We have to prove that sin2A1+cos2A=tanA\frac{\sin 2A}{1 + \cos 2A} = \tan A

    L.H.S. =sin2A1+cos2A=2sinAcosA1+cos2Asin2A= \frac{\sin 2A}{1 + \cos 2A} = \frac{2\sin A\cos A}{1 + \cos^2A - \sin^2A}

    =2sinAcosA2cos2A[1sin2A=cos2A]= \frac{2\sin A\cos A}{2\cos^2A}[\because 1 - \sin^2A = \cos^2A]

    =tanA== \tan A = R.H.S.

  5. We have to prove that sin2A1cos2A=cotA\frac{\sin 2A}{1 - \cos 2A} = \cot A

    L.H.S. =sin2A1cos2A=2sinAcosA1(cos2Asin2A)= \frac{\sin 2A}{1 - \cos 2A} = \frac{2\sin A\cos A}{1 -(\cos^2A - \sin^2A)}

    =2sinAcosA2sin2A=cotA== \frac{2\sin A\cos A}{2\sin^2A} = \cot A = R.H.S.

  6. We have to prove that 1cos2A1+cos2A=tan2A\frac{1 - \cos 2A}{1 + \cos 2A} = \tan^2A

    L.H.S. =1(cos2Asin2A)1+cos2Asin2A= \frac{1 - (\cos^2A - \sin^2A)}{1 + \cos^2A - \sin^2A}

    =2sin2A2cos2A=tan2A== \frac{2\sin^2A}{2\cos^2A} = \tan^2A = R.H.S.

  7. We have to prove that tanA+cotA=2cosec2A\tan A + \cot A = 2\cosec 2A

    L.H.S. =sinAcosA+cosAsinA=sin2A+cos2AsinAcosA= \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A} = \frac{\sin^2A + \cos^2A}{\sin A\cos A}

    =22sinAcosA=2sin2A=2cosec2A== \frac{2}{2\sin A\cos A} = \frac{2}{\sin 2A} = 2\cosec 2A = R.H.S.

  8. We have to prove that tanAcotA=2cot2A\tan A - \cot A = -2\cot2A

    L.H.S. =sinAcosAcosAsinA=sin2Acos2AsinAcosA= \frac{\sin A}{\cos A} - \frac{\cos A}{\sin A} = \frac{\sin^2A - \cos^2A}{\sin A\cos A}

    =cos2Asin2A2=2cot2A== \frac{-\cos2A}{\frac{\sin2A}{2}} = -2\cot2A = R.H.S.

  9. We have to prove that cosec2A+cot2A=cotA\cosec 2A + \cot 2A = \cot A

    L.H.S. =1sin2A+cos2Asin2A=1+cos2Asin2A=2cos2A2sinAcosA= \frac{1}{\sin 2A} + \frac{\cos 2A}{\sin 2A} = \frac{1 + \cos 2A}{\sin 2A} = \frac{2\cos^2A}{2\sin A\cos A}

    =cotA== \cot A = R.H.S.

  10. We have to prove that 1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)=tanA2cotB2\frac{1 - \cos A + \cos B - \cos(A + B)}{1 + \cos A - \cos B - \cos(A + B)} = \tan\frac{A}{2}\cot\frac{B}{2}

    L.H.S. =1cosA+cosBcos(A+B)1+cosAcosBcos(A+B)= \frac{1 - \cos A + \cos B - \cos(A + B)}{1 + \cos A - \cos B - \cos(A + B)}

    =2sin2A2+2sinA2sin(A2+B)2cos2A22cosA2cos(A2+B)= \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\sin\left(\frac{A}{2} + B\right)}{2\cos^2\frac{A}{2} - 2\cos\frac{A}{2}\cos\left(\frac{A}{2} + B\right)}

    =sinA2(sinA2+sin(A2+B))cosA2(cosA2cos(A2+B))= \frac{\sin\frac{A}{2}\left(\sin\frac{A}{2} + \sin \left(\frac{A}{2} + B\right)\right)}{\cos\frac{A}{2}\left(\cos\frac{A}{2} - \cos\left(\frac{A}{2} + B\right)\right)}

    =tanA2(2sin(A+B2)cosB2)2sin(A+B2)sinB2= \frac{\tan\frac{A}{2}\left(2\sin\left(\frac{A + B}{2}\right)\cos\frac{B}{2}\right)}{2\sin\left(\frac{A + B}{2}\right)\sin\frac{B}{2}}

    =tanA2cotB2= \tan\frac{A}{2}\cot\frac{B}{2}

  11. We have to prove that cosA1sinA=tan(45±A2)\frac{\cos A}{1 \mp \sin A} = \tan\left(45^\circ \pm \frac{A}{2}\right)

    First considering - sign on L.H.S.,

    L.H.S. =cosA1sinA=cos2A2sin2A2(cosA2sinA2)2= \frac{\cos A}{1 - \sin A} = \frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\left(\cos\frac{A}{2} - \sin\frac{A}{2}\right)^2}

    Dividing numerator and denomiator by cos2A2\cos^2\frac{A}{2}

    =1tan2A2(1tanA2)2= \frac{1 - \tan^2\frac{A}{2}}{\left(1 - \tan\frac{A}{2}\right)^2}

    =1+tanA21tanA2= \frac{1 + \tan\frac{A}{2}}{1 - \tan\frac{A}{2}}

    =tan45+tanA21tan45tanA2=tan(45+A2)= \frac{\tan45^\circ + \tan\frac{A}{2}}{1 - \tan45^\circ\tan\frac{A}{2}} = \tan\left(45^\circ + \frac{A}{2}\right)

    Similarly by considering the ++ sign we can prove the other sign.

  12. We have to prove that sec8A1sec4A1=tan8Atan2A\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A}

    L.H.S. =sec8A1sec4A1=1cos8A1cos4A.cos4Acos8A= \frac{\sec 8A - 1}{\sec 4A - 1} = \frac{1 - \cos 8A}{1 - \cos 4A}.\frac{\cos4A}{\cos8A}

    =2sin24A2sin22A.cos4Acos8A=(2sin4Acos4A).sin4A2sin22A.cos8A= \frac{2\sin^24A}{2\sin^22A}.\frac{\cos 4A}{\cos8A} = \frac{(2\sin4A\cos4A).\sin4A}{2\sin^22A.\cos8A}

    =sin8Acos8A.sin4A2sin22A=tan8A.2sin2Acos2A2sin22A=tan8Atan2A== \frac{\sin8A}{\cos8A}.\frac{\sin4A}{2\sin^22A} = \frac{\tan8A. 2\sin2A\cos2A}{2\sin^22A} = \frac{\tan8A}{\tan2A} = R.H.S.

  13. We have to prove that 1+tan2(45A)1tan2(45A)=cosec2A\frac{1 + \tan^2(45^\circ - A)}{1 - \tan^2(45^\circ - A)} = \cosec 2A

    L.H.S. =1+tan2(45A)1tan2(45A)= \frac{1 + \tan^2(45^\circ - A)}{1 - \tan^2(45^\circ - A)}

    =cos2(45A)+sin2(45A)cos2(45A)sin2(45A)= \frac{\cos^2(45^\circ - A) + \sin^2(45^\circ - A)}{\cos^2(45^\circ - A) - \sin^2(45^\circ - A)}

    =1cos(902A)=1sin2A=cosec2A== \frac{1}{\cos(90^\circ - 2A)} = \frac{1}{\sin2A} = \cosec2A = R.H.S.

  14. We have to prove that sinA+sinBsinAsinB=tanA+B2tanAB2\frac{\sin A + \sin B}{\sin A - \sin B} = \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}}

    L.H.S. =sinA+sinBsinAsinB=2sinA+B2cosAB22cosA+B2sinAB2= \frac{\sin A + \sin B}{\sin A - \sin B} = \frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2}}{2\cos\frac{A + B}{2}\sin\frac{A - B}{2}}

    =tanA+B2tanAB2== \frac{\tan \frac{A + B}{2}}{\tan \frac{A - B}{2}} = R.H.S.

  15. We have to prove that sin2Asin2BsinAcosAsinBcosB=tan(A+B)\frac{\sin^2A - \sin^2B}{\sin A\cos A - \sin B\cos B} = \tan(A + B)

    L.H.S. =2(cos2Bcos2A)sin2Asin2B=cos2Bcos2Asin2Asin2B= \frac{2(\cos^2B - \cos^2A)}{\sin2A - \sin2B} = \frac{\cos2B - \cos2A}{\sin2A - \sin2B}

    =sin(A+B)sin(AB)cos(A+B)sin(AB)=tan(A+B)== \frac{\sin(A + B)\sin(A - B)}{\cos(A + B)\sin(A - B)} = \tan(A + B) = R.H.S.

  16. We have to prove that tan(π4+A)tan(π4A)=2tan2A\tan\left(\frac{\pi}{4} + A\right) - \tan\left(\frac{\pi}{4} - A\right) = 2\tan 2A

    L.H.S. =1+tanA1tanA1tanA1+tanA= \frac{1 + \tan A}{1 - \tan A} - \frac{1 - \tan A}{1 + \tan A}

    =(1+tanA)2(1tanA)21tan2A=4tanA1tan2A= \frac{(1 + \tan A)^2 - (1 - \tan A)^2}{1 - \tan^2A} = \frac{4\tan A}{1 - \tan^2A}

    =4sinAcosA.cos2Acos2Asin2A=2sin2Acos2A=2tan2A== \frac{4\sin A}{\cos A}. \frac{\cos^2A}{\cos^2A - \sin^2A} = \frac{2\sin2A}{\cos2A} = 2\tan2A = R.H.S.

  17. We have to prove that cosA+sinAcosAsinAcosAsinAcosA+sinA=2tan2A\frac{\cos A + \sin A}{\cos A - \sin A} - \frac{\cos A - \sin A}{\cos A + \sin A} = 2\tan 2A

    L.H.S. =(cosA+sinA)2(cosAsinA)2cos2Asin2A= \frac{(\cos A + \sin A)^2 - (\cos A - \sin A)^2}{\cos^2A - \sin^2A}

    =4cosAsinAcos2A=2sin2Acos2A=2tan2A== \frac{4\cos A\sin A}{\cos 2A} = \frac{2\sin 2A}{\cos 2A} = 2\tan2A = R.H.S.

  18. We have to prove that cot(A+15)tan(A15)=4cos2A1+2sin2A\cot (A + 15^\circ) - \tan(A - 15^\circ) = \frac{4\cos 2A}{1 + 2\sin 2A}

    L.H.S. =1tan(A+15)tan(A15)tan(A+15)= \frac{1 - \tan(A + 15^\circ)\tan(A - 15^\circ)}{\tan(A + 15^\circ)}

    =cos(A+15)cos(A15)sin(A+15)sin(A15)cos(A+15)cos(A15).cos(A+15)sin(A+15)= \frac{\cos(A + 15^\circ)\cos(A - 15^\circ) - \sin(A + 15^\circ)\sin(A - 15^\circ)}{\cos(A + 15^\circ)\cos(A - 15^\circ)}.\frac{\cos(A + 15^\circ)}{\sin(A + 15^\circ)}

    =cos2Asin(A+15)cos(A15)=2cos2A2sin(A+15)cos(A15)= \frac{\cos 2A}{\sin(A + 15^\circ)\cos(A - 15^\circ)} = \frac{2\cos 2A}{2\sin(A + 15^\circ)\cos(A - 15^\circ)}

    =2cos2Asin2A+sin30=4cos2A1+sin2A== \frac{2\cos 2A}{\sin2A + \sin30^\circ} = \frac{4\cos 2A}{1 + \sin 2A} = R.H.S.

  19. We have to prove that sinA+sin2A1+cosA+cos2A=tanA\frac{\sin A + \sin2A}{1 + \cos A + \cos 2A} = \tan A

    L.H.S. =sinA+2sinAcosAcosA+2cos2A=sinA(1+2cosA)cosA(1+2cosA)= \frac{\sin A + 2\sin A\cos A}{\cos A + 2\cos^2A} = \frac{\sin A(1 + 2\cos A)}{\cos A(1 + 2\cos A)}

    =tanA== \tan A = R.H.S.

  20. We have to prove that 1+sinAcosA1+sinA+cosA=tanA2\frac{1 + \sin A - \cos A }{1 + \sin A + cos A} = \tan \frac{A}{2}

    L.H.S. =2sin2A2+2sinA2cosA22cos2A2+2sinA2cosA2= \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}

    =sinA2(sinA2+cosA2)cosA2(sinA2+cosA2)= \frac{\sin\frac{A}{2}(\sin\frac{A}{2} + \cos\frac{A}{2})}{\cos\frac{A}{2}(\sin\frac{A}{2} + \cos\frac{A}{2})}

    =tanA2== \tan\frac{A}{2} = R.H.S.

  21. We have to prove that sin(n+1)Asin(n1)Acos(n+1)A+2cosnA+cos(n1)A=tanA2\frac{\sin(n + 1)A - \sin(n - 1)A}{\cos(n + 1)A + 2\cos nA + \cos(n - 1)A} = \tan \frac{A}{2}

    L.H.S. =2cosnAsinA2cosnAcosA+2cosnA=sinA1+cosA= \frac{2\cos nA \sin A}{2\cos nA \cos A + 2\cos nA} = \frac{\sin A}{1 + \cos A}

    =2sinA2cosA22cos2A2=tanA2== \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2}} = \tan \frac{A}{2} = R.H.S.

  22. We have to prove that sin(n+1)A+2sinnA+sin(n1)Acos(n1)cos(n+1)A=cotA2\frac{\sin(n + 1)A + 2\sin nA + \sin(n - 1)A}{\cos(n - 1) - \cos(n + 1)A} = \cot \frac{A}{2}

    L.H.S. =2sinnAcosA+2sinnA2sinnAsinA= \frac{2\sin nA\cos A + 2\sin nA}{2\sin nA\sin A}

    =cosA+1sinA=2cos2A22sinA2cosA2= \frac{\cos A + 1}{\sin A} = \frac{2\cos^2\frac{A}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}}

    =cotA2== \cot\frac{A}{2} = R.H.S.

  23. We have to prove that sin(2n+1)AsinA=sin2(n+1)Asin2nA\sin(2n + 1)A\sin A = \sin^2(n + 1)A - \sin^2nA

    R.H.S. =(sin(n+1)A+sinnA)(sin(n+1)AsinnA)= (\sin(n + 1)A + \sin nA)(\sin(n + 1)A - \sin nA)

    =(2sin2n+12AcosA2)(2cos2n+12AsinA2)= (2\sin\frac{2n + 1}{2}A\cos \frac{A}{2})(2\cos\frac{2n + 1}{2}A\sin \frac{A}{2})

    =2sin2n+12Acos2n+12A.2cosA2sinA2= 2\sin\frac{2n + 1}{2}A\cos\frac{2n + 1}{2}A.2\cos \frac{A}{2}\sin\frac{A}{2}

    =sin(2n+1)AsinA== \sin(2n + 1)A\sin A = L.H.S.

  24. We have to prove that sin(A+3B)+sin(3A+B)sin2A+sin2B=2cos(A+B)\frac{\sin(A + 3B) + \sin(3A + B)}{\sin 2A + \sin 2B} = 2\cos(A + B)

    L.H.S. =sin(A+3B)+sin(3A+B)sin2A+sin2B= \frac{\sin(A + 3B) + \sin(3A + B)}{\sin 2A + \sin 2B}

    =2sin(2A+2B)cos(AB)2sin(A+B)cos(AB)= \frac{2\sin(2A + 2B)\cos(A - B)}{2\sin(A + B)\cos(A - B)}

    =2sin(A+B)cos(A+B)sin(A+B)=2cos(A+B)== \frac{2\sin(A + B)\cos(A + B)}{\sin(A + B)} = 2\cos(A + B) = R.H.S.

  25. We have to prove that sin3A+sin2AsinA=4sinAcosA2cos3A2\sin 3A + \sin 2A - \sin A = 4\sin A\cos \frac{A}{2}\cos \frac{3A}{2}

    L.H.S. =2cos2AsinA+2sinAcosA=2sinA(cos2A+cosA)= 2\cos 2A\sin A + 2\sin A\cos A = 2\sin A(\cos 2A + \cos A)

    =2sinAcos3A2cosA2== 2\sin A\cos \frac{3A}{2}\cos\frac{A}{2} = R.H.S.

  26. We have to prove that tan2A=(sec2A+1)sec2A1\tan 2A = (\sec 2A + 1)\sqrt{\sec^2A - 1}

    R.H.S. =1+cos2Acos2A1cos2Acos2A= \frac{1 + \cos 2A}{\cos 2A}\sqrt{\frac{1 - \cos^2A}{\cos^2A}}

    =2cos2A2cos2A1.sin2Acos2A= \frac{2\cos^2A}{2\cos^2A - 1}.\sqrt{\frac{\sin^2A}{\cos^2A}}

    =22sec2A.tanA=2tanA1tan2A=tanA+tanA1tanA.tanA= \frac{2}{2 - \sec^2A}.tan A = \frac{2\tan A}{1 - \tan^2A} = \frac{\tan A + \tan A}{1 - \tan A.\tan A}

    =tan2A==\tan 2A = R.H.S.

  27. We have to prove that cos32A+3cos2A=4(cos6Asin6A)\cos^32A + 3\cos 2A = 4(\cos^6A - \sin^6A)

    L.H.S. =(cos2Asin2A)3+3(cos2Asin2A)= (\cos^2A - \sin^2A)^3 + 3(\cos^2A - \sin^2A)

    =cos6A3cos4Asin2A+3cos2Asin4Asin6A+3(cos2Asin2A)= \cos^6A -3\cos^4A\sin^2A + 3\cos^2A\sin^4A - \sin^6A + 3(\cos^2A - \sin^2A)

    =cos6A3cos4A(1cos2A)+3(1sin2A)sin4Asin6A+3(cos2Asin2A)= \cos^6A -3\cos^4A(1 - \cos^2A) + 3(1 - \sin^2A)\sin^4A - \sin^6A + 3(\cos^2A - \sin^2A)

    =4(cos6Asin6A)== 4(\cos^6A - \sin^6A) = R.H.S.

  28. We have to prove that 1+cos22A=2(cos4A+sin4A)1 + \cos^22A = 2(\cos^4A + \sin^4A)

    L.H.S. =1+(cos2Asin2A)2=12sin2Acos2A+cos4A+sin4A= 1 + (\cos^2A - \sin^2A)^2 = 1 - 2\sin^2A\cos^2A + \cos^4A + \sin^4A

    =12sin2A(1sin2A)+cos4A+sin4A= 1 - 2\sin^2A(1 - \sin^2A) + \cos^4A + \sin^4A

    =12sin2A+2sin4A+cos4A+sin4A= 1 - 2\sin^2A + 2\sin^4A + \cos^4A + \sin^4A

    =(1sin2A)2+cos4A+2sin4A=2(cos4A+sin4A)== (1 - \sin^2A)^2 + \cos^4A + 2\sin^4A = 2(\cos^4A + \sin^4A) = R.H.S.

  29. We have to prove that sec2A(1+sec2A)=2sec2A\sec^2A(1 + \sec2A) = 2\sec2A

    L.H.S. =1cos2A.cos2A+1cos2A= \frac{1}{\cos^2A}.\frac{\cos2A + 1}{\cos 2A}

    =1cos2A.2cos2Acos2A=2sec2A== \frac{1}{\cos^2A}.\frac{2\cos^2A}{\cos 2A} = 2\sec2A = R.H.S.

  30. We have to prove that cosecA2cot2AcosA=2sinA\cosec A - 2\cot 2A\cos A = 2\sin A

    L.H.S. =1sinA2cos2AcosAsin2A= \frac{1}{\sin A} - \frac{2\cos 2A\cos A}{\sin 2A}

    =1sinA2cos2AcosA2sinAcosA= \frac{1}{\sin A} - \frac{2\cos 2A\cos A}{2\sin A\cos A}

    1sinAcos2AsinA=1cos2AsinA\frac{1}{\sin A} - \frac{\cos 2A}{\sin A} = \frac{1 - \cos 2A}{\sin A}

    =2sin2AsinA=2sinA== \frac{2\sin^2A}{\sin A} = 2\sin A = R.H.S.

  31. We have to prove that cotA=12(cotA2tanA2)\cot A = \frac{1}{2}\left(\cot\frac{A}{2} - \tan\frac{A}{2}\right)

    R.H.S. =12(1tan2A2tanA2)= \frac{1}{2}\left(\frac{1 - \tan^2\frac{A}{2}}{\tan\frac{A}{2}}\right)

    =12(cos2A2sin2A2cos2A2).cosA2sinA2= \frac{1}{2}\left(\frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\cos^2\frac{A}{2}}\right).\frac{\cos\frac{A}{2}}{\sin \frac{A}{2}}

    =12cosAcosA2.1sinA2=cotA== \frac{1}{2}\frac{\cos A}{\cos\frac{A}{2}}.\frac{1}{\sin\frac{A}{2}} = \cot A = L.H.S.

  32. We have to prove that sinAsin(60A)sin(60+A)=14sin3A\sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A

    L.H.S. =sinA.cos2Acos1202=sinA(12sin2A+12)2=\sin A.\frac{\cos 2A - \cos 120^\circ}{2} = \frac{\sin A\left(1 - 2\sin^2A + \frac{1}{2}\right)}{2}

    =3sinA4sin3A4=14sin3A== \frac{3\sin A - 4\sin^3A}{4} = \frac{1}{4}\sin 3A = R.H.S.

  33. We have to prove that cosAcos(60A)cos(60+A)=14cos3A\cos A\cos(60^\circ - A)\cos(60^\circ + A) = \frac{1}{4}\cos 3A

    L.H.S. =cosA2(cos2A+cos120)=cosA2(2cos2A112)= \frac{\cos A}{2}\left(\cos 2A + \cos120^\circ\right) = \frac{\cos A}{2}\left(2\cos^2A - 1 - \frac{1}{2}\right)

    =4cos3A3cosA4=14cos3A== \frac{4\cos^3A - 3\cos A}{4} = \frac{1}{4}\cos 3A = R.H.S.

  34. We have to prove that cotA+cot(60+A)cot(60A)=3cot3A\cot A + \cot(60^\circ + A) - \cot(60^\circ - A) = 3\cot 3A

    L.H.S. =1tanA+1tan(60+A)1tan(60A)= \frac{1}{\tan A} + \frac{1}{\tan(60^\circ + A)} - \frac{1}{\tan(60^\circ - A)}

    =1tanA+13tanA3+tanA1+3tanA3tanA= \frac{1}{\tan A} + \frac{1 - \sqrt{3}\tan A}{\sqrt{3} + \tan A} - \frac{1 + \sqrt{3}\tan A}{\sqrt{3} - \tan A}

    =1tanA8tanA3tan2A=3(13tan2A)3tanAtan3A=3tan3A= \frac{1}{\tan A} - \frac{8\tan A}{3 - \tan^2A} = \frac{3(1 - 3\tan^2A)}{3\tan A - \tan^3A} = \frac{3}{\tan 3A}

    =3cot3A== 3\cot 3A = R.H.S.

  35. We have to prove that cos4A=18cos2A+8cos4A\cos 4A = 1 - 8\cos^2A + 8\cos^4A

    L.H.S. =cos4A=2cos22A1=2(2cos2A1)21= \cos 4A = 2\cos^22A - 1 = 2(2\cos^2A - 1)^2 - 1

    =2(4cos4A4cos2A+1)1=2(4\cos^4A - 4\cos^2A + 1) - 1

    =18cos2A+8cos4A== 1 - 8\cos^2A + 8\cos^4A = R.H.S.

  36. We have to prove that sin4A=4sinAcos3A4cosAsin3A\sin 4A = 4\sin A\cos^3A - 4\cos A\sin^3A

    L.H.S. =2sin2Acos2A=4sinAcosA(cos2Asin2A)= 2\sin 2A\cos 2A = 4\sin A\cos A(\cos^2A - \sin^2A)

    =4sinAcos3A4cosAsin3A== 4\sin A\cos^3A - 4\cos A\sin^3A = R.H.S.

  37. We have to prove that cos6A=32cos6A48cos4A+18cos2A1\cos 6A = 32\cos^6A - 48\cos^4A + 18\cos^2A - 1

    L.H.S. =cos6A=(cos23Asin23A)=(4cos3A3cosA)2(3sinA4sin3A)2= \cos 6A = (\cos^23A - \sin^23A) = (4\cos^3A - 3\cos A)^2 - (3\sin A - 4\sin^3A)^2

    =16cos6A+9cos2A24cos4A9sin2A16sin6A+24sin4A= 16\cos^6A + 9\cos^2A -24\cos^4A - 9\sin^2A - 16\sin^6A + 24\sin^4A

    =16cos6A+9cos2A24cos4A9(1cos2A)16(1cos2A)3+24(1cos2A)2= 16\cos^6A + 9\cos^2A -24\cos^4A - 9(1 - \cos^2A) - 16(1 - \cos^2A)^3 + 24(1 - \cos^2A)^2

    =32cos6A48cos4A+18cos2A1== 32\cos^6A - 48\cos^4A + 18\cos^2A - 1 = R.H.S.

  38. We have to prove that tan3Atan2AtanA=tan3Atan2AtanA\tan 3A\tan 2A\tan A = \tan 3A - \tan 2A - \tan A

    Rewriting this as following:

    tanA+tan2A=tan3A(1tanAtan2A)tanA+tan2A1tanAtan2A=tan3A\tan A + \tan 2A = \tan 3A(1 - \tan A\tan 2A)\Rightarrow \frac{\tan A + \tan 2A}{1 - \tan A\tan 2A} = \tan 3A

    tan(A+2A)=tan3A\Rightarrow \tan (A + 2A) = \tan 3A

    Hence, proved.

  39. We have to prove that 2cos2nA+12cosA+1=(2cosA1)(2cos2A1)(2cos22A1)(2cos2n11)\frac{2\cos2^nA + 1}{2\cos A + 1} = (2\cos A - 1)(2\cos 2A - 1)(2\cos2^2A - 1)\ldots(2\cos2^{n - 1} - 1)

    L.H.S. =2cos2nA+12cosA+1= \frac{2\cos2^nA + 1}{2\cos A + 1}

    Multiplying and dividing by 2cosA12\cos A - 1

    =(2cosA1)2cos2nA+14cos2A1=(2cosA1)2cos2nA+12cos2A+1= (2\cos A - 1)\frac{2\cos2^nA + 1}{4\cos^2A - 1} = (2\cos A - 1)\frac{2\cos2^nA + 1}{2\cos2A + 1}

    Multiplying and dividing by 2cos2A12\cos2A - 1

    =(2cosA1)(2cos2A1)2cos2nA+14cos22A1= (2\cos A - 1)(2\cos2A - 1)\frac{2\cos2^nA + 1}{4\cos^22A - 1}

    =(2cosA1)(2cos2A1)2cos2nA+12cos22A+1= (2\cos A - 1)(2\cos2A - 1)\frac{2\cos2^nA + 1}{2\cos2^2A + 1}

    Proceeding similarly we obtain the R.H.S.

  40. Given tanA=17,sinB=110\tan A= \frac{1}{7}, \sin B = \frac{1}{\sqrt{10}}

    cosB=310,tanB=13\therefore \cos B = \frac{3}{\sqrt{10}}, \tan B = \frac{1}{3}

    tan(A+2B)=tanA+tan2B1tanAtan2B\tan(A + 2B) = \frac{\tan A + \tan 2B}{1 - \tan A\tan 2B}

    =tanA+2tanB1tan2B1tanA.2tanB1tan2B= \frac{\tan A + \frac{2\tan B}{1 - \tan^2B}}{1 - \tan A.\frac{2\tan B}{1 - \tan^2B}}

    =17+213119117.213119= \frac{\frac{1}{7} + \frac{2\frac{1}{3}}{1 - \frac{1}{9}}}{1 - \frac{1}{7}.\frac{2\frac{1}{3}}{1 - \frac{1}{9}}}

    =1A+2B=π4= 1 \therefore A + 2B = \frac{\pi}{4}

  41. We have to prove that tan(π4+A)+tan(π4A)=2sec2A\tan\left(\frac{\pi}{4} + A\right) + \tan\left(\frac{\pi}{4} - A\right) = 2\sec2A

    L.H.S. =1+tanA1tanA+1tanA1+tanA= \frac{1 + \tan A}{1 - \tan A} + \frac{1 - \tan A}{1 + \tan A}

    =(1+tanA)2+(1tanA)21tan2A=2+2tan2A1tan2A= \frac{(1 + \tan A)^2 + (1 - \tan A)^2}{1 - \tan^2A} = \frac{2 + 2\tan^2A}{1 - \tan^2A}

    =2(sin2A+cos2A)cos2Asin2A=2cos2A=2sec2A== \frac{2(\sin^2A + \cos^2A)}{\cos^2A - \sin^2A} = \frac{2}{\cos 2A} = 2\sec 2A = R.H.S.

  42. We have to prove that 3cosec20sec20=4\sqrt{3}\cosec 20^\circ - \sec 20^\circ = 4

    L.H.S. =3sin201cos20= \frac{\sqrt{3}}{\sin20^\circ} - \frac{1}{\cos20^\circ}

    =4(32)cos2012sin202sin20cos20= \frac{4(\frac{\sqrt{3}}{2})\cos20^\circ - \frac{1}{2}\sin20^\circ}{2\sin20^\circ\cos^20\circ}

    =4(sin(5020))sin40=4== \frac{4(\sin(50^\circ - 20^\circ))}{\sin40^\circ} = 4 = R.H.S.

  43. We have to prove that tanA+2tan2A+4tan4A+8cot8A=cotA\tan A + 2\tan 2A + 4\tan 4A + 8\cot 8A = \cot A

    tanAcotA=sin2Acos2AsinAcosA=2cos2Asin2A=2cot2A\tan A - \cot A = \frac{\sin^2A - \cos^2A}{\sin A\cos A} = -\frac{2\cos 2A}{\sin 2A} = -2\cot 2A

    Similarly, 2tan2A2cot2A=4cot4A2\tan 2A - 2\cot 2A = -4\cot 4A

    and 4tan4A4cot4A=8cot8A4\tan 4A - 4\cot 4A = -8\cot 8A

    Thus, tanA+2tan2A+4tan4A+8cot8A=cotA\tan A + 2\tan 2A + 4\tan 4A + 8\cot 8A = \cot A

  44. We have to prove that cos2A+cos2(2π3A)+cos2(2π3+A)=32\cos^2A + \cos^2\left(\frac{2\pi}{3} - A\right) + \cos^2\left(\frac{2\pi}{3} + A\right) = \frac{3}{2}

    2cos2A+2cos2(2π3A)+2cos2(2π3+A)=3\Rightarrow 2\cos^2A + 2\cos^2\left(\frac{2\pi}{3} - A\right) + 2\cos^2\left(\frac{2\pi}{3} + A\right) = 3

    L.H.S. =cos2A+1+cos(4π32A)+1+cos(4π3+2A)+1= \cos 2A + 1 + \cos\left(\frac{4\pi}{3} - 2A\right) + 1 + \cos\left(\frac{4\pi}{3} + 2A\right) + 1

    =3+cos2A+2cos(4π3)cos2A=3== 3 + \cos2A + 2\cos\left(\frac{4\pi}{3}\right)\cos2A = 3 = R.H.S.

  45. 2sin2A+4cos(A+B)sinAsinB+cos2(A+B)2\sin^2A + 4\cos (A + B)\sin A\sin B + \cos2(A + B)

    =2sin2A+2cos(A+B)2sinAsinB+cos2(A+B)= 2\sin^2A + 2\cos(A + B)2\sin A\sin B + \cos2(A + B)

    =2sin2A+2cos(A+B)[cos(AB)cos(A+B)]+cos2(A+B)= 2\sin^2A + 2\cos(A + B)[\cos(A - B) - \cos(A + B)] + \cos2(A + B)

    =2sin2A+2cos(A+B)cos(AB)2cos2(A+B)+cos2(A+B)= 2\sin^2A + 2\cos(A + B)\cos(A - B) - 2\cos^2(A + B) + \cos2(A + B)

    =2sin2A+2(cos2Asin2B)2cos2(A+B)+2cos2(A+B)1= 2\sin^2A + 2(\cos^2A - \sin^2B) - 2\cos^2(A + B) + 2\cos^2(A + B) - 1

    =2(sin2A+cos2A)2sin2B1=12sin2B= 2(\sin^2A + \cos^2A) -2\sin^2B - 1 = 1 -2\sin^2B which is independent of AA

  46. Given, cosA=12(a+1a)\cos A = \frac{1}{2}\left(a + \frac{1}{a}\right)

    cos2A=2cos2A1=2.14(a+1a)21\cos 2A = 2\cos^2A - 1 = 2.\frac{1}{4}\left(a + \frac{1}{a}\right)^2 - 1

    =12(a2+1a2)= \frac{1}{2}\left(a^2 + \frac{1}{a^2}\right)

  47. We have to prove that cos2A+sin2Acos2B=cos2B+sin2Bcos2A\cos^2A + \sin^2A\cos 2B = \cos^2B + \sin^2B\cos 2A

    cos2Acos2B=sin2Bcos2Asin2Acos2B\Rightarrow \cos^2A - \cos^2B = \sin^2B\cos2A - \sin^2A\cos2B

    R.H.S. =sin2Bcos2Asin2Acos2B= \sin^2B\cos2A - \sin^2A\cos2B

    =sin2B(cos2Asin2A)sin2A(cos2Bsin2B)= \sin^2B(\cos^2A - \sin^2A) - \sin^2A(\cos^2B - \sin^2B)

    =cos2Asin2Bsin2Acos2B=cos2A(1cos2B)(1cos2A)cos2B= \cos^2A\sin^2B - \sin^2A\cos^2B = \cos^2A(1 - \cos^2B) - (1 - \cos^2A)\cos^2B

    =cos2Acos2B== \cos^2A - \cos^2B = R.H.S.

  48. We have to prove that 1+tanAtan2A=sec2A1 + \tan A\tan 2A = \sec 2A

    L.H.S. =1+tanAtan2A=1+tanA.2tanA1tan2A= 1 + \tan A\tan 2A = 1 + \tan A.\frac{2\tan A}{1 - \tan^2A}

    =1+tan2A1tan2A=cos2A+sin2Acos2Asin2A= \frac{1 + \tan^2A}{1 - \tan^2A} = \frac{\cos^2A + \sin^2A}{\cos^2A - \sin^2A}

    =1cos2A=sec2A== \frac{1}{\cos 2A} = \sec 2A = R.H.S.

  49. We have to prove that 1+sin2A1sin2A=(1+tanA1tanA)2\frac{1 + \sin 2A}{1 - \sin 2A} = \left(\frac{1 + \tan A}{1 - \tan A}\right)^2

    L.H.S. =1+sin2A1sin2A=sin2A+cos2A+2sinAcosAsin2A+cos2A2sinAcosA= \frac{1 + \sin 2A}{1 - \sin 2A} = \frac{\sin^2A + \cos^2A + 2\sin A\cos A}{\sin^2A + \cos^2A - 2\sin A\cos A}

    =(sinA+cosAsinAcosA)2= \left(\frac{\sin A + \cos A}{\sin A - \cos A}\right)^2

    Dividing numerator and denominator by cos2A,\cos^2A, we get

    =(1+tanA1tanA)2== \left(\frac{1 + \tan A}{1 - \tan A}\right)^2 = R.H.S.

  50. We have to prove that 1sin103cos10=4\frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ} = 4

    L.H.S. =1sin103cos10= \frac{1}{\sin 10^\circ} - \frac{\sqrt{3}}{\cos 10^\circ}

    =cos103sin10sin10cos10= \frac{\cos10^\circ - \sqrt{3}\sin10^\circ}{\sin10^\circ\cos10^\circ}

    =2.2(12cos1032sin10)2sin10cos10= \frac{2.2\left(\frac{1}{2}\cos10^\circ - \frac{\sqrt{3}}{2}\sin10^\circ\right)}{2\sin10^\circ\cos10^\circ}

    =4.sin30cos10cos30sin10sin20=4.sin(3010)sin20= 4.\frac{\sin30^\circ\cos10^\circ - \cos30^\circ\sin10^\circ}{\sin20^\circ} = 4.\frac{\sin(30^\circ - 10^\circ)}{\sin20^\circ}

    =4== 4 = R.H.S.

  51. We have to prove that cot2Atan2A=4cot2Acosec2A\cot^2A - \tan^2A = 4\cot2A\cosec 2A

    L.H.S. =cos2Asin2Asin2Acos2A= \frac{\cos^2A}{\sin^2A} - \frac{\sin^2A}{\cos^2A}

    =cos4Asin4Asin2Acos2A=4(cos2A+sin2A)(cos2Asin2AA)(2sinAcosA)2= \frac{\cos^4A - \sin^4A}{\sin^2A\cos^2A} = \frac{4(\cos^2A + \sin^2A)(\cos^2A - \sin^2AA)}{(2\sin A\cos A)^2}

    =4cos2Asin22A=4cot2Acosec2A== \frac{4\cos 2A}{\sin^22A} = 4\cot 2A\cosec 2A = R.H.S.

  52. We have to prove that 1+sin2Acos2A=cosA+sinAcosAsinA=tan(π4+A)\frac{1 +\sin 2A}{\cos2A} = \frac{\cos A + \sin A}{\cos A - \sin A} = \tan\left(\frac{\pi}{4} + A\right)

    L.H.S. =1+sin2Acos2A=sin2A+cos2A+2sinAcosAcos2Asin2A= \frac{1 +\sin 2A}{\cos2A} = \frac{\sin^2A + \cos^2A + 2\sin A\cos A}{\cos^2A - \sin^2A}

    =(cosA+sinA)2cos2Asin2A=cosA+sinAcosAsinA== \frac{(\cos A + \sin A)^2}{\cos^2A - \sin^2A} = \frac{\cos A + \sin A}{\cos A - \sin A} = middle term

    Dividing both numerator and denominator by cosA,\cos A, we get

    =1+tanA1tanA=tanπ4+tanA1tanπ4.tanA= \frac{1 + \tan A}{1 - \tan A} = \frac{\tan\frac{\pi}{4} + \tan A}{1 - \tan\frac{\pi}{4}.\tan A}

    =tan(π4+A)== \tan\left(\frac{\pi}{4} + A\right) = R.H.S.

  53. We have to prove that cos6Asin6A=cos2A(114sin22A)\cos^6A - \sin^6A = \cos2A\left(1 - \frac{1}{4}\sin^22A\right)

    R.H.S. =cos2A(114sin22A)=(cos2Asin2A)(1sin2Acos2A)= \cos2A\left(1 - \frac{1}{4}\sin^22A\right) = (\cos^2A - \sin^2A)(1 - \sin^2A\cos^2A)

    =(cos2Asin2A)[(cos2A+sin2A)2sin2Acos2A]=cos6Asin6A== (\cos^2A - \sin^2A)[(\cos^2A + \sin^2A)^2 - \sin^2A\cos^2A] = \cos^6A - \sin^6A = L.H.S.

  54. This problem is similar to 44 and can be solved similarly.

  55. We have to prove that (1+sec2A)(1+sec22A)(1+sec23A)(1+sec2nA)=tan2nAtanA(1 + \sec2A)(1+ \sec2^2A)(1 + sec2^3A) \ldots (1 + \sec2^nA) = \frac{\tan2^nA}{\tan A}

    L.H.S. =(1+sec2A)(1+sec22A)(1+sec23A)(1+sec2nA)= (1 + \sec2A)(1 + \sec2^2A)(1 + \sec2^3A) \ldots (1 + \sec2^nA)

    =tanAtanA(1+sec2A)(1+sec22A)(1+sec23A)(1+sec2nA)= \frac{\tan A}{\tan A}(1 + \sec2A)(1 + \sec2^2A)(1 + \sec2^3A) \ldots (1 + \sec2^nA)

    Now tanA(1+sec2A)=tanA1+cos2Acos2A\tan A(1 + \sec 2A) = \tan A\frac{1 + \cos 2A}{\cos 2A}

    =tanA1+1tan2A1+tan2A1tan2A1+tan2A= \tan A\frac{1 + \frac{1 - \tan^2A}{1 + \tan^2A}}{\frac{1 - \tan^2A}{1 + \tan^2A}}

    =tanA21tan2A=2tanA1tan2A=tan2A= \tan A\frac{2}{1 - \tan^2A} = \frac{2\tan A}{1 - \tan^2A} = \tan 2A

    Similarly, tan2A(1+sec22A)=tan22A\tan 2A(1 + \sec2^2A) = \tan2^2A

    Proceeding similalry we obtain R.H.S.

  56. We have to prove that sin2nAsinA=2ncosAcos2Acos22Acos2n1A\frac{\sin2^nA}{\sin A} = 2^n\cos A\cos 2A\cos 2^2A\ldots\cos2^{n - 1}A

    Dividing and multiplying with 2cosA2\cos A

    L.H.S. =sin2nAsinA=2cosA.sin2nA2sinAcosA=2cosA.sin2nAsin2A= \frac{\sin2^nA}{\sin A} = 2\cos A.\frac{\sin2^nA}{2\sin A\cos A} = 2\cos A.\frac{\sin2^nA}{\sin 2A}

    Again, dividing and multiplying with 2cos2A2\cos 2A

    =22cosAcos2A.sin2nA2sin2Acos2A=22cosAcos2A.sin2nAsin22A= 2^2\cos A\cos 2A.\frac{\sin2^n A}{2\sin 2A\cos 2A} = 2^2\cos A\cos 2A.\frac{\sin2^n A}{\sin 2^2A}

    Proceeding similarly, we find the R.H.S.

  57. We have to prove that 3(sinAcosA)4+6(sinA+cosA)2+4(sin6A+cos6A)=133(\sin A - \cos A)^4 + 6(\sin A + \cos A)^2 + 4(\sin^6A + \cos^6A) = 13

    3(sinAcosA)4=3[(sinAcosA)2]2=3(1sin2A)23(\sin A - \cos A)^4 = 3[(\sin A - \cos A)^2]^2 = 3(1 - \sin 2A)^2

    6(sinA+cosA)2=6(1+sin2A)6(\sin A + \cos A)^2 = 6(1 + \sin2A)

    4(sin6A+cos6A)=4[(cos2A+sin2A)33cos2Asin2A(cos2A+sin2A)]=4(134sin22A)4(\sin^6A + \cos^6A) = 4[(\cos^2A + \sin^2A)^3 - 3\cos^2A\sin^2A(\cos^2A + \sin^2A)] = 4(1 - \frac{3}{4}\sin^22A)

    Adding all these yields 13.13.

  58. We have to prove that 2(sin6A+cos6A)3(sin4A+cos4A)+1=02(\sin^6A + \cos^6A) - 3(\sin^4A + \cos^4A) + 1 = 0

    L.H.S. =2[(sin2A+cos2A)33sin2Acos2A(sin2A+cos2A)]3[(sin2A+cos2A)22sin2Acos2A]+1= 2[(\sin^2A + \cos^2A)^3 - 3\sin^2A\cos^2A(\sin^2A + \cos^2A)] -3[(\sin^2A + \cos^2A)^2 - 2\sin^2A\cos^2A] + 1

    =2(13sin2Acos2A)3[12sin2Acos2A]+1=0== 2(1 - 3\sin^2A\cos^2A) - 3[1 - 2\sin^2A\cos^2A] + 1 = 0 = R.H.S.

  59. Given cos2A+cos2(A+B)2cosAcosBcos(A+B)\cos^2A + \cos^2(A + B) -2\cos A\cos B\cos(A + B)

    =cos2A+cos2(A+B)2cosAcosBcos(A+B)+cos2Acos2Bcos2Acos2B= \cos^2A + \cos^2(A + B) -2\cos A\cos B\cos(A + B) + \cos^2A\cos^2B - \cos^2A\cos^2B

    =cos2A+[cos(A+B)cosAcosB]2cos2Acos2B= \cos^2A + [\cos(A + B) - \cos A\cos B]^2 - \cos^2A\cos^2B

    =cos2A+sin2Asin2Bcos2Acos2B= \cos^2A + \sin^2A\sin^2B - \cos^2A\cos^2B

    =cos2A+(1cos2A)(1cos2B)cos2Acos2B= \cos^2A + (1 - \cos^2A)(1 - \cos^2B) - \cos^2A\cos^2B

    =1cos2B= 1 - \cos^2B which is independent of AA

  60. We have to prove that cos3Acos3A+sin3Asin3A=cos32A\cos^3A\cos 3A + \sin^3A\sin 3A = \cos^32A

    We know that cos3A=14(3cosA+cos3A)\cos^3A = \frac{1}{4}(3\cos A + \cos 3A) and

    sin3A=14(3sinAsin3A)\sin^3A = \frac{1}{4}(3\sin A - \sin 3A)

    L.H.S. =14(3cosA+cos3A)cos3A+14(3sinAsin3A)sin3A= \frac{1}{4}(3\cos A + \cos 3A)\cos 3A + \frac{1}{4}(3\sin A - \sin 3A)\sin 3A

    =34(cos3AcosA+sin3AsinA)+14(cos23Asin23A)= \frac{3}{4}(\cos3A\cos A + \sin 3A\sin A) + \frac{1}{4}(\cos^23A - \sin^23A)

    =34cos2A+14cos6A= \frac{3}{4}\cos 2A + \frac{1}{4}\cos6A

    =34cos2A+14(4cos32A3cos2A)= \frac{3}{4}\cos 2A + \frac{1}{4}(4\cos^32A - 3\cos 2A)

    =cos32A== \cos^32A = R.H.S.

  61. We have to prove that tanAtan(60A)tan(60+A)=tan3A\tan A\tan(60^\circ - A)\tan(60^\circ + A) = \tan 3A

    L.H.S. =sinA.sin(60A).sin(60+A)cosA.cos(60A).cos(60+A)= \frac{\sin A.\sin(60^\circ - A).\sin(60^\circ + A)}{\cos A.\cos(60^\circ - A).\cos(60^\circ + A)}

    =sinA(sin260sin2A)cosA(cos260sin2A)[sin(A+B)sin(AB)=sin2Asin2B and cos(A+B)cos(AB)=cos2Asin2B]= \frac{\sin A(\sin^260^\circ - \sin^2A)}{\cos A(\cos^260^\circ - \sin^2A)}[\because \sin(A + B)\sin (A - B) = \sin^2A - \sin^2B\text{~and~}\cos(A + B)\cos(A - B) = \cos^2A - \sin^2B]

    =sinA(34sin2A)cosA(14sin2A)=3sinA4sin3A4cos3A3cosA= \frac{\sin A(3 - 4\sin^2A)}{\cos A(1 - 4\sin^2A)} = \frac{3\sin A - 4\sin^3A}{4\cos^3A - 3\cos A}

    =sin3Acos3A=tan3A== \frac{\sin 3A}{\cos 3A} = \tan 3A = R.H.S.

  62. We have to prove that sin2A+sin3(2π3+A)+sin3(4π3+A)=34sin3A\sin^2A + \sin^3\left(\frac{2\pi}{3} + A\right) + \sin^3\left(\frac{4\pi}{3} + A\right) = -\frac{3}{4}\sin 3A

    sin3A=14[3sinAsin3A]\because \sin^3A = \frac{1}{4}[3\sin A - \sin 3A]

    L.H.S. =14[3sinAsin3A]+14[3sin(2π3+A)sin(2π+3A)]+14[3sin(4π3+A)sin(4π+3A)]= \frac{1}{4}[3\sin A - \sin 3A] + \frac{1}{4}\left[3\sin\left(\frac{2\pi}{3} + A\right) - \sin(2\pi + 3A)\right] + \frac{1}{4}\left[3\sin\left(\frac{4\pi}{3} + A\right) - \sin(4\pi + 3A)\right]

    =14[3sinAsin3A]+14[3sin(2π3+A)sin3A]+14[3sin(4π3+A)sin3A]= \frac{1}{4}[3\sin A - \sin 3A] + \frac{1}{4}\left[3\sin\left(\frac{2\pi}{3} + A\right) - \sin3A\right] + \frac{1}{4}\left[3\sin\left(\frac{4\pi}{3} + A\right) - \sin3A\right]

    =34[sinAsin3A+sin(2π3+A)+sin(4π3+A)]= \frac{3}{4}\left[\sin A - \sin 3A + \sin\left(\frac{2\pi}{3} + A\right) + \sin\left(\frac{4\pi}{3} + A\right)\right]

    =34[sinAsin3A+2.(sinA).12]= \frac{3}{4}[\sin A - \sin 3A + 2.(-\sin A).\frac{1}{2}]

    =34sin3A== -\frac{3}{4}\sin 3A = R.H.S.

  63. We have to prove that 4(cos310+sin320)=3(cos10+sin20)4(\cos^310^\circ + \sin^320^\circ) = 3(\cos 10\circ + \sin 20^\circ)

    4cos3103cos10=3sin204sin320\Rightarrow 4\cos^310^\circ - 3\cos10^\circ = 3\sin20^\circ - 4\sin^320^\circ

    cos3.10=sin3.20\Rightarrow \cos 3.10^\circ = \sin 3.20^\circ

    cos30=sin6032=32\Rightarrow \cos 30^\circ = \sin 60^\circ \Rightarrow \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}

    Hence, proved.

  64. We have to prove that sinAcos3AcosAsin3A=14sin4A\sin A\cos^3A - \cos A\sin^3A = \frac{1}{4}\sin 4A

    L.H.S. =122sinAcosA(cos2Asin2A)=12sin2Acos2A= \frac{1}{2}2\sin A\cos A(\cos^2A - \sin^2A) = \frac{1}{2}\sin2A\cos 2A

    =14.2.sin2Acos2A=14sin4A== \frac{1}{4}.2.\sin2A\cos 2A = \frac{1}{4}\sin 4A = R.H.S.

  65. We have to prove that cos3Asin3A+sin3Acos3A=34sin4A\cos^3A\sin3A + \sin^3A\cos 3A = \frac{3}{4}\sin 4A

    L.H.S. =cos3A(3sinA4sin3A)+sin3A(4cos3A4cosA)= \cos^3A(3\sin A - 4\sin^3A) + \sin^3A(4\cos^3A - 4\cos A)

    =3(sinAcos3AcosAsin3A)= 3(\sin A\cos^3A - \cos A\sin^3A)

    Following previous problem we obtain R.H.S.

  66. We have to prove that sinAsin(60+A)sin(A+120)=sin3A\sin A\sin(60^\circ + A)\sin(A + 120^\circ) = \sin 3A

    We have proved in problem 32 that sinAsin(60A)sin(60+A)=14sin3A\sin A\sin(60^\circ - A)\sin(60^\circ + A) = \frac{1}{4}\sin 3A

    Thus, we can prove what is required.

  67. We have to prove that cotA+cot(60+A)+cot(120+A)=3cot3A\cot A + \cot(60^\circ + A) + \cot(120^\circ + A) = 3\cot 3A

    L.H.S. =cotA+cot(60+A)+cot(180(60A))= \cot A + \cot(60^\circ + A) + \cot(180^\circ - (60^\circ - A))

    =cotA+cot(60+A)cot(60A)= \cot A + \cot(60^\circ + A) - \cot(60^\circ - A)

    This we have proved in problem 34.

  68. We have to prove that cos5A=16cos5A20cos3A+5cosA\cos 5A = 16\cos^5A - 20\cos^3A + 5\cos A

    L.H.S. cos(2A+3A)=cos2Acos3Asin2Asin3A\cos(2A + 3A) = \cos 2A\cos 3A - \sin2A\sin3A

    =(2cos2A1)(4cos3A3cosA)2sinAcosA(3sinA4sin3A)= (2\cos^2A - 1)(4\cos^3A - 3\cos A) - 2\sin A\cos A(3\sin A - 4\sin^3A)

    =8cos5A10cos3A+3cosA2cosAsin2A[34(1cos2A)]= 8\cos^5A - 10\cos^3A + 3\cos A - 2\cos A\sin^2A[3 - 4(1 - \cos^2A)]

    =8cos5A10cos3A+3cosA2cosA(1sin2A)[4cos2A1]= 8\cos^5A - 10\cos^3A + 3\cos A - 2\cos A(1 - \sin^2A)[4\cos^2A - 1]

    =16cos5A20cos3A+5cosA== 16\cos^5A - 20\cos^3A + 5\cos A = R.H.S.

  69. We have to prove that sin5A=5sinA20sin3A+16sin5A\sin 5A = 5\sin A - 20\sin^3A + 16\sin^5A

    L.H.S. =sin5A=sin(2A+3A)=sin2Acos3A+sin3Acos2A= \sin5A = \sin(2A + 3A) = \sin2A\cos3A + \sin3A\cos2A

    =2sinAcosA(4cos3A3cosA)+(3sinA4sin3A)(12sin2A)= 2\sin A\cos A(4\cos^3A - 3\cos A) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A)

    =2sinA(1sin2A)(4cos2A3)+(3sinA4sin3A)(12sin2A)= 2\sin A(1 - \sin^2A)(4\cos^2A - 3) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A)

    =2(sinAsin3A)(14sin2A)+(3sinA4sin3A)(12sin2A)= 2(\sin A - \sin^3A)(1 - 4\sin^2A) + (3\sin A - 4\sin^3A)(1 - 2\sin^2A)

    =5sinA20sin3A+16sin5A== 5\sin A - 20\sin^3A + 16\sin^5A = R.H.S.

  70. We have to prove that cos4Acos4B=8(cosAcosB)(cosA+cosB)(cosAsinB)(cosA+sinB)\cos 4A - \cos 4B = 8(\cos A - \cos B)(\cos A + \cos B)(\cos A - \sin B)(\cos A + \sin B)

    R.H.S. =2(2cos2A2cos2B)(2cos2A2sin2B)= 2(2\cos^2A - 2\cos^2B)(2\cos^2A - 2\sin^2B)

    =2(cos2Acos2B)(cos2A+cos2B)= 2(\cos 2A - \cos 2B)(\cos 2A + \cos 2B)

    =2(cos22Acos22B)=cos4Acos4B== 2(\cos^22A - \cos^22B) = \cos4A - \cos4B = L.H.S.

  71. We have to prove that tan4A=4tanA4tan3A16tan2A+tan4A\tan 4A = \frac{4\tan A - 4\tan^3A}{1 - 6\tan^2A + \tan^4A}

    L.H.S. =tan4A=tan(2A+2A)=2tan2A1tan22A= \tan 4A = \tan(2A + 2A) = \frac{2\tan2A}{1 - \tan^22A}

    =2.2tanA1tan2A1(2tanA1tan2A)2= \frac{2.\frac{2\tan A}{1 - \tan^2A}}{1 - \left(\frac{2\tan A}{1 - \tan^2A}\right)^2}

    Solving this yields R.H.S.

  72. Given 2tanA=3tanB,2\tan A = 3\tan B, we have to prove that tan(AB)=sin2B5cos2B\tan (A- B) = \frac{\sin 2B}{5 - \cos 2B}

    tanA=32tanB\tan A = \frac{3}{2}\tan B

    tan(AB)=tanAtanB1+tanAtanB=32tanBtanB1+32tan2B\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A\tan B} = \frac{\frac{3}{2}\tan B - \tan B}{1 + \frac{3}{2}\tan^2B}

    =tanB2+3tan2B=sinBcosB2cos2B+3sin2B= \frac{\tan B}{2 + 3\tan^2B} = \frac{\sin B\cos B}{2\cos^2B + 3\sin^2B}

    =sinBcosB1+cos2B+3.12(1cos2B)= \frac{\sin B\cos B}{1 + \cos 2B + 3.\frac{1}{2}(1 - \cos 2B)}

    =sin2B5cos2B== \frac{\sin 2B}{5 - \cos 2B} = R.H.S.

  73. Given sinA+sinB=x\sin A + \sin B = x and cosA+cosB=y,\cos A + \cos B = y, we have to show that sin(A+B)=2xyx2+y2\sin(A + B) = \frac{2xy}{x^2 + y^2}

    2xy=2(sinA+sinB)(cosA+cosB)2xy = 2(\sin A + \sin B)(\cos A + \cos B)

    =2(sinAcosA+sinBcosB+sinAcosB+cosAsinB)= 2(\sin A\cos A + \sin B\cos B + \sin A\cos B + \cos A\sin B)

    =sin2A+sin2B+2sin(A+B)= \sin2A + \sin 2B + 2\sin(A + B)

    =2sin(A+B)cos(AB)+2sin(A+B)=2sin(A+B)[cos(AB)+1]= 2\sin(A + B)\cos(A - B) + 2\sin(A + B) = 2\sin(A + B)[\cos(A - B) + 1]

    x2+y2=(sinA+sinB)2+(cosA+cosB)2x^2 + y^2 = (\sin A + \sin B)^2 + (\cos A + \cos B)^2

    =2+2(cosAcosB+sinAsinB)=2[1+cos(AB)]= 2 + 2(\cos A\cos B + \sin A \sin B) = 2[1 + \cos (A - B)]

    2xyx2+y2=sin(A+B)\therefore \frac{2xy}{x^2 + y^2} = \sin(A + B)

  74. Given A=π2n+1,A= \frac{\pi}{2^n + 1}, we have to prove that cosA.cos2A.cos22A..cos2n1A=12n\cos A.\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A = \frac{1}{2^n}

    L.H.S. =cosA.cos2A.cos22A..cos2n1A= \cos A.\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A

    =12sinA(2sinAcosA).cos2A.cos22A..cos2n1A= \frac{1}{2\sin A}(2\sin A\cos A).\cos 2A. \cos2^2A.\ldots.\cos2^{n - 1}A

    =12sinAsin2A.cos2A.cos22A..cos2n1A= \frac{1}{2\sin A}\sin 2A.\cos 2A.\cos2^2A.\ldots.\cos2^{n - 1}A

    =122sinA(2sin2Acos2A)cos22A..cos2n1A= \frac{1}{2^2\sin A}(2\sin 2A\cos 2A)\cos2^2A.\ldots.\cos2^{n - 1}A

    Proceeding similarly

    =12nsinAsin2nA=12nsinAsin(πA)=12n== \frac{1}{2^n\sin A}\sin2^n A = \frac{1}{2^n\sin A}\sin(\pi - A) = \frac{1}{2^n} = R.H.S.

  75. Given tanA=yx,\tan A = \frac{y}{x}, we have to prove that xcos2A+ysin2A=xx\cos 2A + y\sin 2A = x

    tanA=yxsinA=yx2+y2,cosA=xx2+y2\because \tan A = \frac{y}{x} \therefore \sin A = \frac{y}{\sqrt{x^2 + y^2}}, \cos A = \frac{x}{\sqrt{x^2 + y^2}}

    xcos2A+ysin2A=x(cos2Asin2A)+2ysinAcosA=x(x2y2x2+y2)+2x2yx2+y2\therefore x\cos 2A + y\sin 2A = x(\cos^2A - \sin^2A) + 2y\sin A\cos A = x\left(\frac{x^2 - y^2}{x^2 + y^2}\right) + 2\frac{x^2y}{x^2 + y^2}

    =x== x = R.H.S.

  76. Given tan2A=1+2tan2B,\tan^2A = 1 + 2\tan^2B, we have to prove that cos2B=1+2cos2A\cos 2B = 1 + 2\cos 2A

    1+2cos2A=1+2.1tan2A1+tan2A=3tan2A1+tan2A1 + 2\cos 2A = 1 + 2.\frac{1 - \tan^2A}{1 + \tan^2A} = \frac{3 - \tan^2A}{1 + \tan^2A}

    =312tan2B2+2tan2B=1tan2B1+tan2B=cos2B== \frac{3 - 1 - 2\tan^2B}{2 + 2\tan^2B} = \frac{1 - \tan^2B}{1 + \tan^2B} = \cos 2B = L.H.S.

  77. Given cos2A=3cos2B13cos2B,\cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B}, we have to prove that tanA=2tanB\tan A = \sqrt{2}\tan B

    cos2A=3cos2B13cos2B\cos 2A = \frac{3\cos 2B - 1}{3 - \cos 2B}

    1tan2A1+tanB=33tan2B1tan2B3+3tan2B1+tan2B\Rightarrow \frac{1 - \tan^2A}{1 + \tan^B} = \frac{3 - 3\tan^2B - 1 - \tan^2B}{3 + 3\tan^2B - 1 + \tan^2B}

    =12tan2B1+2tan2B= \frac{1 - 2\tan^2B}{1 + 2\tan^2B}

    tan2A=2tan2BtanA=2tanB\therefore \tan^2A = 2\tan^2B \Rightarrow \tan A = \sqrt{2}\tan B

  78. Given tanB=3tanA,\tan B = 3\tan A, we have to prove that tan(A+B)=2sin2B1+cos2B\tan(A + B) = \frac{2\sin 2B}{1 + \cos 2B}

    tan(A+B)=tanA+tanB1tanAtanB\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A\tan B}

    =43tanB1tan2B3=4tanB3tan2B= \frac{\frac{4}{3}\tan B}{1 - \frac{\tan^2B}{3}} = \frac{4\tan B}{3 - \tan^2B}

    =4sinBcosB3cos2Bsin2B=2sin2B2cos2B+cos2B= \frac{4\sin B\cos B}{3\cos^2B - \sin^2B} = \frac{2\sin2B}{2\cos^2B + \cos2B}

    =2sin2B1+cos2B== \frac{2\sin2B}{1 + \cos2B} = R.H.S.

  79. Given xsinA=ycosA,x\sin A = y\cos A, we have to prove that xsec2A+ycosec2A=x\frac{x}{\sec 2A} + \frac{y}{\cosec 2A} = x

    Given tanA=yxsinA=yx2+y2&cosA=xx2+y2\tan A = \frac{y}{x} \therefore \sin A = \frac{y}{\sqrt{x^2 + y^2}} \& \cos A = \frac{x}{\sqrt{x^2 + y^2}}

    L.H.S. =xsec2A+ycosec2A= \frac{x}{\sec 2A} + \frac{y}{\cosec 2A}

    =xcos2A+ysin2A=x(cos2Asin2A)+2ysinAcosA= x\cos2A + y\sin2A = x(\cos^2A - \sin^2A) + 2y\sin A\cos A

    xx2y2x2+y2+2xy2x2+y2x\frac{x^2 - y^2}{x^2 + y^2} + \frac{2xy^2}{x^2 + y^2}

    =x= x

  80. Given tanA=sec2B,\tan A = \sec 2B, we have to prove that sin2A=1tan4B1+tan4B\sin 2A = \frac{1 - \tan^4B}{1 + \tan^4B}

    tanA=1cos2B=1+tan2B1tan2B\tan A = \frac{1}{\cos 2B} = \frac{1 + \tan^2B}{1 - \tan^2B}

    sinA=1+tan2B2+2tan4B\therefore \sin A = \frac{1 + \tan^2B}{\sqrt{2 + 2\tan^4B}}

    and cosA=1tan2B2+2tan4B\cos A = \frac{1 - \tan^2B}{\sqrt{2 + 2\tan^4B}}

    L.H.S. sin2A=2sinAcosA=1tan4B1+tan4B=\sin 2A = 2\sin A\cos A = \frac{1 - \tan^4B}{1 + \tan^4B} = R.H.S.

  81. Given A=π3,A = \frac{\pi}{3}, we have to prove that cosA.cos2A.cos3A.cos4A.cos5A.cos6A=116\cos A.\cos 2A. \cos 3A.\cos 4A.\cos 5A.\cos 6A = -\frac{1}{16}

    L.H.S. =182cosA.cos6A.2cos2A.cos5A.2cos3Acos4A= \frac{1}{8}2\cos A.\cos 6A.2\cos 2A.\cos 5A.2\cos 3A\cos 4A

    =18(cos7A2+cos5A2)(cos7A2+cos3A2)(cos7A2+cosA2)= \frac{1}{8}\left(\cos \frac{7A}{2} + \cos \frac{5A}{2}\right)\left(\cos \frac{7A}{2} + \cos \frac{3A}{2}\right)\left(\cos \frac{7A}{2} + \cos \frac{A}{2}\right)

    =18[cos(π+π6)+cos(ππ6)][cos(π+π6)+cos(π2)]+[cos(π+π6)+cosπ6]= \frac{1}{8}\left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \left(\pi - \frac{\pi}{6}\right)\right]\left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \left(\frac{\pi}{2}\right)\right] + \left[\cos\left(\pi + \frac{\pi}{6}\right) + \cos \frac{\pi}{6}\right]

    =116= -\frac{1}{16}

  82. Given A=π15,A = \frac{\pi}{15}, we have to prove that cos2A.cos4A.cos8A.cos14A=116\cos2A.\cos4A.\cos8A.\cos14A = \frac{1}{16}

    cos14A=cos14π15=cos(2π16π15)=cos16A\cos 14A = \cos \frac{14\pi}{15} = \cos \left(2\pi - \frac{16\pi}{15}\right) = \cos 16A

    L.H.S. =cos2A.cos4A.cos8A.cos16A=12sin2A.2sin2A.cos2A.cos4A.cos8A.cos16A= \cos2A.\cos4A.\cos8A.\cos16A = \frac{1}{2\sin2A}.2\sin2A.\cos2A.\cos4A.\cos8A.\cos16A

    =12sin2Asin4A.cos4A.cos8A.cos16A=122sin2Asin8A.cos8A.cos16A= \frac{1}{2\sin2A}\sin4A.\cos4A.\cos8A.\cos16A = \frac{1}{2^2\sin 2A}\sin8A.\cos8A.\cos16A

    =124sin2Asin32A=116sin2Asin(2π+2A)=116== \frac{1}{2^4\sin 2A}\sin32A = \frac{1}{16\sin2A}\sin(2\pi + 2A) = \frac{1}{16} = R.H.S.

  83. Given tanAtanB=aba+b,\tan A\tan B = \sqrt{\frac{a - b}{a + b}}, we have to prove that (abcos2A)(abcos2B)=a2b2(a - b\cos2A)(a - b\cos2B) = a^2 - b^2

    L.H.S. =(abcos2A)(abcos2B)=[ab1tan2A1+tan2A][ab1tan2B1+tan2B]= (a - b\cos2A)(a - b\cos2B) = \left[a -b\frac{1 - \tan^2A}{1 + \tan^2A}\right]\left[a - b\frac{1 - \tan^2B}{1 + \tan^2B}\right]

    =[ab1tan2A1+tan2A][ab1ab(a+b)tan2A1+ab(a+b)tan2A]= \left[a -b\frac{1 - \tan^2A}{1 + \tan^2A}\right]\left[a - b\frac{1 - \frac{a - b}{(a + b)\tan^2A}}{1 + \frac{a - b}{(a + b)\tan^2A}}\right]

    Solving this yields a2b2\frac{a^2 - b^2}{}

  84. Given sinA=12\sin A = \frac{1}{2} and sinB=13,\sin B = \frac{1}{3}, we have to find the value of sin(A+B)\sin(A + B) and sin(2A+2B)\sin(2A + 2B)

    cosA=32\cos A = \frac{\sqrt{3}}{2} and cosB=83\cos B = \frac{\sqrt{8}}{3}

    sin(A+B)=sinAcosB+cosAsinB=86+36=8+36\sin(A + B) = \sin A\cos B + \cos A\sin B = \frac{\sqrt{8}}{6} + \frac{\sqrt{3}}{6} = \frac{\sqrt{8} + \sqrt{3}}{6}

    sin(2A+2B)=sin2Acos2B+cos2Asin2B\sin(2A + 2B) = \sin 2A\cos 2B + \cos 2A\sin 2B

    =2sinAcosA(cos2Bsin2B)+2sinBcosB(cos2Asin2A)= 2\sin A\cos A(\cos^2B - \sin^2B) + 2\sin B\cos B(\cos^2A - \sin^2A)

    Substituting the values we obtain the desired result.

85 and 86 have been left as exercises.

  1. cosA=310=1tan2A21+tan2A2=310\cos A = \frac{3}{10} = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{3}{10}

    Let x=tanA2,x = \tan \frac{A}{2}, then 1x21+x2=310\frac{1 - x^2}{1 + x^2} = \frac{3}{10}

    x=±713x = \pm \sqrt{\frac{7}{13}}

    The reason for two values is that cosA\cos A may lie in first or fourth quadrant. If it is in first quadrant then tanA2\tan \frac{A}{2} will be positive and if it is in fourth quadrant then tanA2\tan \frac{A}{2} will be negative.

  2. Given sinA+sinB=x\sin A + \sin B = x and cosA+cosB=y,\cos A + \cos B = y, we have to find the value of tanAB2\tan \frac{A - B}{2}

    tanAB2=tanA2tanB21+tanA2tanB2\tan \frac{A - B}{2} = \frac{\tan \frac{A}{2} - \tan \frac{B}{2}}{1 + \tan\frac{A}{2}\tan\frac{B}{2}}

    =sinA2cosB2sinB2cosA2cosA2cosB2sinA2sinB2= \frac{\sin \frac{A}{2}\cos\frac{B}{2} - \sin\frac{B}{2}\cos\frac{A}{2}}{\cos\frac{A}{2}\cos\frac{B}{2} - \sin\frac{A}{2}\sin\frac{B}{2}}

    Also, tan(AB)=2tanAB21tan2AB2\tan(A - B) = \frac{2\tan\frac{A - B}{2}}{1 - \tan^2\frac{A - B}{2}}

    Let tanAB2=a,\tan\frac{A - B}{2} = a, then tan(AB)=2a1+a2\tan(A - B) = \frac{2a}{1 + a^2}

    x2+y2=2+2sinAsinB+2cosAcosBx^2 + y^2 = 2 + 2\sin A\sin B + 2\cos A\cos B

    Solving this yields tanAB2=4x2y2x2+y2\tan\frac{A - B}{2} = \sqrt{\frac{4 - x^2 - y^2}{x^2 + y^2}}

  3. We have to prove that (cosA+cosB)2+(sinAsinB)2=4cos2A+B2(\cos A + \cos B)^2 + (\sin A - \sin B)^2 = 4\cos^2 \frac{A + B}{2}

    L.H.S. =cos2A+cos2B+2cosAcosB+sin2A+sin2B2sinAsinB= \cos^2A + \cos^2B + 2\cos A\cos B + \sin^2A + \sin^2B - 2\sin A\sin B

    =2+2cos(A+B)=4cos2A+B2== 2 + 2\cos(A + B) = 4\cos^2\frac{A + B}{2} = R.H.S.

  4. We have to prove that (cosA+cosB)2+(sinA+sinB)2=4cos2AB2(\cos A + \cos B)^2 + (\sin A + \sin B)^2 = 4\cos^2 \frac{A - B}{2}

    L.H.S. =cos2A+cos2B+2cosAcosB+sin2A+sin2B+2sinAsinB= \cos^2A + \cos^2B + 2\cos A\cos B + \sin^2A + \sin^2B + 2\sin A\sin B

    =2+2cos(AB)=4cos2AB2== 2 + 2\cos(A - B) = 4\cos^2\frac{A - B}{2} = R.H.S.

  5. We hve to prove that (cosAcosB)2+(sinAsinB)2=4sin2AB2(\cos A - \cos B)^2 + (\sin A - \sin B)^2 = 4\sin^2 \frac{A - B}{2}

    L.H.S. =cos2A+cos2B2cosAcosB+sin2A+sin2B+2sinAsinB= \cos^2A + \cos^2B - 2\cos A\cos B + \sin^2A + \sin^2B + 2\sin A\sin B

    =22cos(AB)=4sin2AB2== 2 - 2\cos(A - B) = 4\sin^2\frac{A - B}{2} = R.H.S.

  6. We have to prove that sin2(π8+A2)sin2(π8A2)=12sinA\sin^2\left(\frac{\pi}{8} + \frac{A}{2}\right) - \sin^2\left(\frac{\pi}{8} -\frac{A}{2}\right) = \frac{1}{\sqrt{2}}\sin A

    L.H.S. =1cos(π4+A)21cos(π4A)2= \frac{1 - \cos\left(\frac{\pi}{4} + A\right)}{2} - \frac{1 - \cos\left(\frac{\pi}{4} - A\right)}{2}

    =cos(π4A)cos(π4+A)2= \frac{\cos\left(\frac{\pi}{4} - A\right) - \cos\left(\frac{\pi}{4} + A\right)}{2}

    =2sinπ4sinA2=12sinA== \frac{2\sin\frac{\pi}{4}\sin A}{2} = \frac{1}{\sqrt{2}}\sin A = R.H.S.

  7. We have to prove that (tan4A+tan2A)(1tan23Atan2A)=2tan3Asec2A(\tan 4A + \tan 2A)(1 - \tan^23A\tan^2A) = 2\tan 3A\sec^2A

    L.H.S. =(tan4A+tan2A)(1+tan3AtanA)(1tan3AtanA)= (\tan 4A + \tan 2A)(1 + \tan 3A\tan A)(1 - \tan 3A\tan A)

    =(sin4Acos4A+sin2Acos2A)(cos3AcosA+sin3AsinAcos3AcosA)(cos3AcosAsin3AsinAcos3AcosA)= \left(\frac{\sin 4A}{\cos 4A} + \frac{\sin 2A}{\cos 2A}\right)\left(\frac{cos 3A\cos A + \sin 3A\sin A}{\cos 3A\cos A}\right)\left(\frac{cos 3A\cos A - \sin 3A\sin A}{\cos 3A - \cos A}\right)

    =sin6Acos4Acos2A.cos4Acos3AcosAcos2Acos3AcosA= \frac{\sin 6A}{\cos 4A\cos 2A}.\frac{\cos 4A}{\cos 3A\cos A}\frac{\cos 2A}{\cos 3A\cos A}

    =2sin3Acos3Acos23Acos2A=2tan3Asec2A== \frac{2\sin3A\cos3A}{\cos^23A\cos^2A} = 2\tan3A\sec^2A = R.H.S.

  8. We have to prove that (1+tanA2secA2)(1+tanA2+secA2)=sinAsec2A2\left(1 + \tan \frac{A}{2} - \sec\frac{A}{2}\right)\left(1 + \tan \frac{A}{2} + \sec\frac{A}{2}\right) = \sin A\sec^2\frac{A}{2}

    L.H.S. =(1+tanA2secA2)(1+tanA2+secA2)= \left(1 + \tan \frac{A}{2} - \sec\frac{A}{2}\right)\left(1 + \tan \frac{A}{2} + \sec\frac{A}{2}\right)

    =(1+tanA2)2sec2A2=2tanA2= \left(1 + \tan\frac{A}{2}\right)^2 - sec^2\frac{A}{2} = 2\tan\frac{A}{2}

    =2sinA2cosA2cos2A2=sinAsec2A2== \frac{2\sin\frac{A}{2}\cos\frac{A}{2}}{\cos^2\frac{A}{2}} = \sin A\sec^2\frac{A}{2} = R.H.S.

  9. We have to prove that 1+sinAcosA1+sinA+cosA=tanA2\frac{1 + \sin A - \cos A}{1 + \sin A + \cos A} = \tan \frac{A}{2}

    L.H.S. =(1cosA)+sinA(1+cosA)+sinA= \frac{(1 - \cos A) + \sin A}{(1 + \cos A) + \sin A}

    =2sin2A2+2sinA2cosA22cos2A2+2sinA2cosA2= \frac{2\sin^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}{2\cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos\frac{A}{2}}

    =sinA2(sinA2+cosA2)cosA2(sinA2+cosA2)= \frac{\sin\frac{A}{2}\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)}{\cos\frac{A}{2}\left(\sin\frac{A}{2} + \cos\frac{A}{2}\right)}

    =tanA2== \tan\frac{A}{2} = R.H.S.

  10. We have to prove that 1tanA21+tanA2=1+sinAcosA=tan(π4+A2)\frac{1 - \tan \frac{A}{2}}{1 + \tan \frac{A}{2}} = \frac{1 + \sin A}{\cos A} = \tan \left(\frac{\pi}{4} + \frac{A}{2}\right)

    1+sinAcosA=sin2A2+cos2A2+2sinA2cosA2cos2A2sin2A2\frac{1 + \sin A}{\cos A} = \frac{\sin^2\frac{A}{2} + \cos^2\frac{A}{2} + 2\sin\frac{A}{2}\cos \frac{A}{2}}{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}

    =sinA2+cosA2cosA2sinA2= \frac{\sin\frac{A}{2} + \cos\frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}}

    Dividing numerator and denominator by cosA2,\cos \frac{A}{2}, we get

    =1+tanA21tanA2= \frac{1 + \tan \frac{A}{2}}{1 - \tan \frac{A}{2}}

  11. We have to prove that cos4π8+cos43π8+cos45π8+cos47π8=32\cos^4\frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}= \frac{3}{2}

    cos4π8=(cos2π8)2=(1+cosπ42)2\cos^4\frac{\pi}{8} = \left(\cos^2\frac{\pi}{8}\right)^2 = \left(\frac{1 + \cos\frac{\pi}{4}}{2}\right)^2

    =(1+122)2=38+24= \left(\frac{1 + \frac{1}{\sqrt{2}}}{2}\right)^2 = \frac{3}{8} + \frac{\sqrt{2}}{4}

    Similalry, cos43π8=3824\cos^4\frac{3\pi}{8} = \frac{3}{8} - \frac{\sqrt{2}}{4}

    cos5π8=cos(π3π8)=cos3π8\cos\frac{5\pi}{8} = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\frac{3\pi}{8}

    cos7π8=cosπ8\cos\frac{7\pi}{8} = -\cos\frac{\pi}{8}

    Thus, cos4π8+cos43π8+cos45π8+cos47π8=32\cos^4\frac{\pi}{8} + \cos^4 \frac{3\pi}{8} + \cos^4\frac{5\pi}{8} + \cos^4\frac{7\pi}{8}= \frac{3}{2}

  12. We have to prove that 2sinAsin2A2sinA+sin2A=tan2A2\frac{2\sin A - \sin2A}{2\sin A + \sin 2A} = \tan^2\frac{A}{2}

    L.H.S. =2sinA2sinAcosA2cosA+2sinAcosA=2sinA(1cosA)2sinA(1+cosA)= \frac{2\sin A - 2\sin A\cos A}{2\cos A + 2\sin A\cos A} = \frac{2\sin A(1 - \cos A)}{2\sin A(1 + \cos A)}

    =2sin2A22cos2A2=tan2A2== \frac{2\sin^2\frac{A}{2}}{2\cos^2\frac{A}{2}} = \tan^2\frac{A}{2} = R.H.S.

  13. We have to prove that cotA2tanA2=2cotA\cot \frac{A}{2} - \tan \frac{A}{2} = 2\cot A

    L.H.S. =cosA2sinA2sinA2cosA2= \frac{\cos \frac{A}{2}}{\sin \frac{A}{2}} - \frac{\sin \frac{A}{2}}{\cos\frac{A}{2}}

    =cos2A2sin2A2sinA2cosA2= \frac{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}{\sin \frac{A}{2}\cos\frac{A}{2}}

    =2cosAsinA=2cotA== \frac{2\cos A}{\sin A} = 2\cot A = R.H.S.

  14. We have to prove that 1+sinA1sinA=tan2(π4+A2)\frac{1 + \sin A}{1 - \sin A} = \tan^2\left(\frac{\pi}{4} + \frac{A}{2}\right)

    L.H.S. =cos2A2+sin2A2+2cosA2sinA2cos2A2+sin2A22cosA2sinA2= \frac{\cos^2\frac{A}{2} + \sin^2\frac{A}{2} + 2\cos \frac{A}{2}\sin\frac{A}{2}}{\cos^2\frac{A}{2} + \sin^2\frac{A}{2} - 2\cos \frac{A}{2}\sin\frac{A}{2}}

    =cosA2+sinA2cosA2sinA2= \frac{\cos \frac{A}{2} + \sin \frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}}

    Dividing both numerator and denominator by cosA2,\cos \frac{A}{2}, we get

    =1+tanA21tanA2=tanπ4+tanA21tanπ4tanA2= \frac{1 + \tan\frac{A}{2}}{1 - \tan \frac{A}{2}} = \frac{\tan\frac{\pi}{4} + \tan \frac{A}{2}}{1 - \tan\frac{\pi}{4}\tan\frac{A}{2}}

    =tan(π4+A2)== \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) = R.H.S.

  15. We have to prove that secA+tanA=tan(π4+A2)\sec A + \tan A = \tan\left(\frac{\pi}{4} + \frac{A}{2}\right)

    L.H.S. =1+sinAcosA=(cosA2+sinA2)2cos2A2sin2A2= \frac{1 + \sin A}{\cos A} = \frac{\left(\cos\frac{A}{2} + \sin\frac{A}{2}\right)^2}{\cos^2\frac{A}{2} - \sin^2\frac{A}{2}}

    =cosA2+sinA2cosA2sinA2= \frac{\cos \frac{A}{2} + \sin \frac{A}{2}}{\cos \frac{A}{2} - \sin \frac{A}{2}}

    Now proceeding like previous problem

    =tan(π4+A2)== \tan\left(\frac{\pi}{4} + \frac{A}{2}\right) = R.H.S.

  16. We have to prove that sinA+sinBsin(A+B)sinA+sinB+sin(A+B)=tanA2tanB2\frac{\sin A + \sin B - \sin(A + B)}{\sin A + \sin B + \sin(A + B)} = \tan \frac{A}{2}\tan \frac{B}{2}

    L.H.S. =2sinA+B2cosAB22sinA+B2cosA+B22sinA+B2cosAB2+2sinA+B2cosA+B2= \frac{2\sin\frac{A + B}{2}\cos\frac{A - B}{2} - 2\sin \frac{A + B}{2}\cos\frac{A + B}{2}}{2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin \frac{A + B}{2}\cos\frac{A + B}{2}}

    =cosAB2cosA+B2cosAB2+cosA+B2= \frac{\cos\frac{A - B}{2} - \cos \frac{A + B}{2}}{\cos\frac{A - B}{2} + \cos \frac{A + B}{2}}

    =2sinA2cosB22cosA2cosB2= \frac{2\sin\frac{A}{2}\cos\frac{B}{2}}{2\cos\frac{A}{2}\cos\frac{B}{2}}

    =tanA2tanB2== \tan \frac{A}{2}\tan \frac{B}{2} = R.H.S.

  17. We have to prove that tan(π4A2)=secAtanA=1sinA1+sinA\tan \left(\frac{\pi}{4} - \frac{A}{2}\right) = \sec A - \tan A = \sqrt{\frac{1 - \sin A}{1 + \sin A}}

    L.H.S. =tan(π4A2)=1tanA21+tanA2= \tan \left(\frac{\pi}{4} - \frac{A}{2}\right) = \frac{1 - \tan \frac{A}{2}}{1 + \tan \frac{A}{2}}

    =cosA2sinA2cosA2+sinA2= \frac{\cos\frac{A}{2} - \sin \frac{A}{2}}{\cos\frac{A}{2} + \sin \frac{A}{2}}

    Multiplying both numerator and denominator by cosA2+sinA2\cos\frac{A}{2} + \sin\frac{A}{2}

    =cosA1+sinA=cos2A(1+sinA)2=1sinA1+sinA= \frac{\cos A}{1 + \sin A} = \sqrt{\frac{\cos^2A}{(1 + \sin A)^2}} = \sqrt{\frac{1 - \sin A}{1 + \sin A}}

    Also, cosA1+sinA=cosA(1sinA)1sin2A=secAtanA\frac{\cos A}{1 + \sin A} = \frac{\cos A(1 - \sin A)}{1 - \sin^2A} = \sec A - \tan A

  18. We have to prove that cosec(π4+A2)cosec(π4A2)=2secA\cosec\left(\frac{\pi}{4} + \frac{A}{2}\right)\cosec \left(\frac{\pi}{4} - \frac{A}{2}\right) = 2\sec A

    L.H.S. =1sin(π4+A2).1sin(π4A2)= \frac{1}{\sin\left(\frac{\pi}{4} + \frac{A}{2}\right)}.\frac{1}{\sin\left(\frac{\pi}{4} - \frac{A}{2}\right)}

    =2cosAcosπ2=2secA== \frac{2}{\cos A - \cos \frac{\pi}{2}} = 2\sec A = R.H.S.

  19. We have to prove that cos2π8+cos23π8+cos25π8+cos27π8=2\cos^2\frac{\pi}{8} + \cos^2\frac{3\pi}{8} + \cos^2\frac{5\pi}{8} + \cos^2\frac{7\pi}{8} = 2

    cos2π8=1+cosπ42=1+222\cos^2\frac{\pi}{8} = \frac{1 + \cos \frac{\pi}{4}}{2} = \frac{1 + \sqrt{2}}{2\sqrt{2}}

    cos23π8=1+cos3π42=2122\cos^2\frac{3\pi}{8} = \frac{1 + \cos \frac{3\pi}{4}}{2} = \frac{\sqrt{2} - 1}{2\sqrt{2}}

    cos25π8=cos23π8\cos^2\frac{5\pi}{8} = \cos^2\frac{3\pi}{8}

    cos27π8=cos2π8\cos^2\frac{7\pi}{8} = \cos^2\frac{\pi}{8}

    L.H.S. =2(1+222+2122)= 2\left(\frac{1 + \sqrt{2}}{2\sqrt{2}} + \frac{\sqrt{2} - 1}{2\sqrt{2}}\right)

    =2== 2 = R.H.S.

  20. This problem is similar to previous problem and can be solved in a likewise manner.

  21. We have to prove that (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=18\left(1 + \cos \frac{\pi}{8}\right)\left(1 + \cos\frac{3\pi}{8}\right)\left(1 + \cos\frac{5\pi}{8}\right)\left(1 + \cos \frac{7\pi}{8}\right) = \frac{1}{8}

    cos7π8=cos(ππ8)=cosπ8\cos\frac{7\pi}{8} = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\frac{\pi}{8}

    cos5π8=cos(π3π8)=cos3π8\cos\frac{5\pi}{8} = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\frac{3\pi}{8}

    L.H.S. =(1cos2π8)(1cos23π8)= \left(1 - \cos^2\frac{\pi}{8}\right)\left(1 - \cos^2\frac{3\pi}{8}\right)

    =sin2π8sin23π8= \sin^2\frac{\pi}{8}\sin^2\frac{3\pi}{8}

    =12cosπ42.12cos3π42= \frac{1 - 2\cos\frac{\pi}{4}}{2}.\frac{1 - 2\cos\frac{3\pi}{4}}{2}

    Substituting values from 105 we get desired result.

  22. We have to find the value of sin23π24\sin \frac{23\pi}{24}

    sin(ππ24)=sin152\sin \left(\pi - \frac{\pi}{24}\right) = \sin\frac{15^\circ}{2}

    sin2A=12(1cos2A)=12(1cos15)\sin^2A = \frac{1}{2}(1 - \cos 2A) = \frac{1}{2}(1 - \cos15^\circ)

    =12(13+122)= \frac{1}{2}\left(1 - \frac{\sqrt{3} + 1}{2\sqrt{2}}\right)

    sinA=1482622\therefore \sin A = \frac{1}{4}\sqrt{8 - 2\sqrt{6} - 2\sqrt{2}}

  23. Given A=112302A=225A = 112^\circ30'\therefore 2A = 225^\circ

    cos2A=cos(180+45)=12\cos 2A = \cos(180^\circ + 45^\circ) = -\frac{1}{\sqrt{2}}

    sinA=1(12)2=2+22|\sin A| = \sqrt{\frac{1 - \left(-\frac{1}{\sqrt{2}}\right)}{2}} = \sqrt{\frac{2 + \sqrt{2}}{2}}

    \because A lies in 2nd quadrant sinA\therefore \sin A will be positive and cosA\cos A will be negative.

    cosA=222|\cos A| = -\frac{\sqrt{2 - \sqrt{2}}}{2}

  24. We have to prove that sin224sin26=18(51)\sin^224^\circ - \sin^26^\circ = \frac{1}{8}(\sqrt{5} - 1)

    L.H.S. =sin(24+6)sin(246)=12.514= \sin(24^\circ + 6^\circ)\sin(24^\circ - 6^\circ) = \frac{1}{2}.\frac{\sqrt{5} - 1}{4}

    =18(51)== \frac{1}{8}(\sqrt{5} - 1) = R.H.S.

  25. We have to prove that tan6.tan42.tan66.tan78=1\tan6^\circ.\tan42^\circ.\tan66^\circ.\tan78^\circ = 1

    L.H.S. =sin666cos66cos6.sin78sin42cos78cos42= \frac{\sin66^\circ6^\circ}{\cos66^\circ\cos6^\circ}.\frac{\sin78^\circ\sin42^\circ}{\cos78^\circ\cos42^\circ}

    =cos60cos72cos60+cos72.cos36cos120cos36+cos120= \frac{\cos60^\circ - \cos72^\circ}{\cos60^\circ + \cos72^\circ}.\frac{\cos36^\circ - \cos120^\circ}{\cos36^\circ + \cos120^\circ}

    =12sin181+2sin18.2cos36+12cos361= \frac{1 - 2\sin18^\circ}{1 + 2\sin18^\circ}.\frac{2\cos36^\circ + 1}{2\cos36^\circ - 1}

    =12(514)1+2(514).2.(5+14)+12.(5+14)1= \frac{1 - 2\left(\frac{\sqrt{5} - 1}{4}\right)}{1 + 2\left(\frac{\sqrt{5} - 1}{4}\right)}.\frac{2.\left(\frac{\sqrt{5} + 1}{4}\right) + 1}{2.\left(\frac{\sqrt{5} + 1}{4}\right) - 1}

    =1== 1 = R.H.S.

  26. We have to prove that sin47+sin61sin11sin25=cos7\sin47^\circ + \sin61^\circ - \sin 11^\circ - \sin25^\circ = \cos 7^\circ

    L.H.S. =2sin54cos72sin18cos7= 2\sin54^\circ\cos7^\circ - 2\sin18^\circ\cos7^\circ

    =2cos7.2cos36.sin18=2cos7.25+14.514= 2\cos7^\circ.2\cos36^\circ.\sin18^\circ = 2\cos7^\circ.2\frac{\sqrt{5} + 1}{4}.\frac{\sqrt{5} - 1}{4}

    =cos7= \cos7^\circ

  27. We have to prove that sin12sin48sin54=18\sin 12^\circ\sin48^\circ\sin54^\circ = \frac{1}{8}

    L.H.S. =12.2sin48sin12.sin54= \frac{1}{2}.2\sin48^\circ\sin12^\circ.\sin54^\circ

    =12(cos36cos60).cos36= \frac{1}{2}(\cos 36^\circ - \cos60^\circ).\cos36^\circ

    =12(5+1412).5+14= \frac{1}{2}\left(\frac{\sqrt{5} + 1}{4} - \frac{1}{2}\right).\frac{\sqrt{5} + 1}{4}

    =18== \frac{1}{8} = R.H.S.

  28. We have to prove that cot14212=2+326\cot 142\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} - 2 - \sqrt{6}

    L.H.S. cos14212=cot(1803712)=cot3712\cos 142\frac{1}{2}^\circ = \cot\left(180^\circ - 37\frac{1}{2}^\circ\right) = -\cot37\frac{1}{2}^\circ

    We know that tan15=cot75=313+1\tan 15^\circ = \cot 75^\circ = \frac{\sqrt{3} - 1}{\sqrt{3} + 1}

    cot3712=2+326=\therefore -\cot37\frac{1}{2}^\circ = \sqrt{2} + \sqrt{3} - 2 - \sqrt{6} = R.H.S.

  29. We have to prove that sin248cos212=5+18\sin^248^\circ - \cos^212^\circ = -\frac{\sqrt{5} + 1}{8}

    L.H.S. =12(2sin2482cos212)= \frac{1}{2}\left(2\sin^248^\circ - 2\cos^212^\circ\right)

    =12(1cos961cos24)= \frac{1}{2}\left(1 - \cos96^\circ - 1 - \cos24^\circ\right)

    =12(2cos60cos36)= -\frac{1}{2}\left(2\cos60^\circ\cos36^\circ\right)

    =12.5+14=5+18== -\frac{1}{2}.\frac{\sqrt{5} + 1}{4} = -\frac{\sqrt{5} + 1}{8} = R.H.S.

  30. We have to prove that 4(sin24+cos6)=3+154(\sin 24^\circ + \cos6^\circ) = \sqrt{3} + \sqrt{15}

    L.H.S. =4(sin24+sin84)=8sin54cos30=43sin54= 4(\sin24^\circ + \sin84^\circ) = 8\sin54^\circ\cos30^\circ = 4\sqrt{3}\sin54^\circ

    =43(3sin184sin318)= 4\sqrt{3}(3\sin18^\circ - 4\sin^318^\circ)

    We know that sin18=514\sin 18^\circ = \frac{\sqrt{5} - 1}{4}

    43(3sin184sin318)=3+15=\therefore 4\sqrt{3}(3\sin18^\circ - 4\sin^318^\circ) = \sqrt{3} + \sqrt{15} = R.H.S.

  31. We have to prove that cot6cot42cot66cot78=1\cot6^\circ\cot42^\circ\cot66^\circ\cot78^\circ = 1

    L.H.S. =1tan6tan42tan66tan78= \frac{1}{\tan6^\circ\tan42^\circ\tan66^\circ\tan78^\circ}

    We know that tan(60x)tanxtan(60+x)=tan3x\tan(60^\circ - x)\tan x\tan(60^\circ + x) = \tan 3x

    Putting x=18,x=18^\circ, we get

    tan42tan18tan78=tan54\tan42^\circ\tan18^\circ\tan78^\circ = \tan54^\circ

    Putting x=6,x=6^\circ, we get

    tan54tan6tan66=tan18\tan54^\circ\tan6^\circ\tan66^\circ = \tan18^\circ

    From these two, we derive that

    tan6tan42tan66tan78=1\tan6^\circ\tan42^\circ\tan66^\circ\tan78^\circ = 1

  32. We have to prove that tan12tan24tan48tan84=1\tan12^\circ\tan24^\circ\tan48^\circ\tan84^\circ = 1

    We know that tan(60x)tanxtan(60+x)=tan3x\tan(60^\circ - x)\tan x\tan(60^\circ + x) = \tan 3x

    Putting x=12,x= 12^\circ, we get

    tan48tan12tan72=tan36\tan48^\circ\tan 12^\circ\tan72^\circ = \tan 36^\circ

    Putthing x=24,x = 24^\circ, we get

    tan36tan24tan84=tan72\tan36^\circ\tan24^\circ\tan84^\circ = \tan72^\circ

    From these two, we derive that

    tan12tan24tan48tan84=1\tan12^\circ\tan24^\circ\tan48^\circ\tan84^\circ = 1

  33. We have to prove that sin6sin42sin66sin78=116\sin6^\circ\sin42^\circ\sin66^\circ\sin78^\circ = \frac{1}{16}

    L.H.S. =sin6sin66sin42sin78= \sin6^\circ\sin66^\circ\sin42^\circ\sin78^\circ

    =14(cos60cos72)(cos36cos120)= \frac{1}{4}(\cos60^\circ - \cos72^\circ)(\cos 36^\circ - \cos120^\circ)

    =14(12cos72)(cos36+12)= \frac{1}{4}\left(\frac{1}{2} - \cos72^\circ\right)\left(\cos36^\circ + \frac{1}{2}\right)

    =116(12cos72)(2cos36+1)= \frac{1}{16}(1 - 2\cos72^\circ)(2\cos36^\circ + 1)

    =116[1+2cos362cos724cos36cos72]= \frac{1}{16}[1 + 2\cos36^\circ - 2\cos72^\circ - 4\cos36^\circ\cos72^\circ]

    =116+18[cos36cos72cos108cos36]= \frac{1}{16} + \frac{1}{8}[\cos36^\circ - \cos72^\circ - \cos 108^\circ - \cos36^\circ]

    =116+18[cos72+108]= \frac{1}{16} + \frac{1}{8}[\cos72^\circ + \circ108^\circ]

    =116+18[cos72+cos(18072)]= \frac{1}{16} + \frac{1}{8}[\cos72^\circ + \cos(180^\circ - 72^\circ)]

    =116= \frac{1}{16}

  34. We have to prove that sinπ5sin2π5sin3π5sin4π5=516\sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\frac{3\pi}{5}\sin\frac{4\pi}{5} = \frac{5}{16}

    L.H.S. =sinπ5sin2π5sin(π2π5)sin(ππ5)= \sin\frac{\pi}{5}\sin\frac{2\pi}{5}\sin\left(\pi - \frac{2\pi}{5}\right)\sin\left(\pi - \frac{\pi}{5}\right)

    =sin2π5sin22π5=sin218sin236=(514)2(141025)2= \sin^2\frac{\pi}{5}\sin^2\frac{2\pi}{5} = \sin^218^\circ\sin^236^\circ = \left(\frac{\sqrt{5} - 1}{4}\right)^2\left(\frac{1}{4}\sqrt{10 - 2\sqrt{5}}\right)^2

    =516== \frac{5}{16} = R.H.S.

  35. We have to prove that cos36cos72cos108cos144=116\cos36^\circ\cos72^\circ\cos108^\circ\cos144^\circ = \frac{1}{16}

    L.H.S. =cos36cos72cos(18072)cos(18036)= \cos36^\circ\cos72^\circ\cos(180^\circ - 72^\circ)\cos(180^\circ - 36^\circ)

    =cos236cos272= \cos^236^\circ\cos^272^\circ

    cos36=5+14,cos72=2cos2361\cos 36^\circ = \frac{\sqrt{5} + 1}{4}, \cos72^\circ = 2\cos^236^\circ - 1

    Thus, cos236cos272=116\cos^236^\circ\cos^272^\circ = \frac{1}{16}

  36. We have to prove that cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15=127\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{2^7}

    L.H.S. =12sinπ152sinπ15cosπ15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15= \frac{1}{2\sin\frac{\pi}{15}}2\sin\frac{\pi}{15}\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}

    =12sinπ15sin2π15cos2π15cos3π15cos4π15cos5π15cos6π15cos7π15= \frac{1}{2\sin\frac{\pi}{15}}\sin\frac{2\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}

    =122sinπ15sin4π15cos3π15cos4π15cos5π15cos6π15cos7π15= \frac{1}{2^2\sin\frac{\pi}{15}}\sin\frac{4\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}

    =123sinπ15sin8π15cos3π15cos5π15cos6π15cos7π15= \frac{1}{2^3\sin\frac{\pi}{15}}\sin\frac{8\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}

    Now, sin8π15=sin(π7π15)=sin7π15,\sin\frac{8\pi}{15} = \sin\left(\pi - \frac{7\pi}{15}\right) = \sin\frac{7\pi}{15}, therefore

    =124sinπ152sin7π15cos3π15cos5π15cos6π15cos7π15= \frac{1}{2^4\sin\frac{\pi}{15}}2\sin\frac{7\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}

    =124sinπ15sin14π15cos3π15cos5π15cos6π15= \frac{1}{2^4\sin\frac{\pi}{15}}\sin\frac{14\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}

    Now sin14π15=sin(ππ15)=sinπ15,\sin\frac{14\pi}{15} = \sin\left(\pi - \frac{\pi}{15}\right) = \sin\frac{\pi}{15}, therefore

    =124cos3π15cos5π15cos6π15= \frac{1}{2^4}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}

    =125sin3π152sin3π15cos3π15cos5π15cos6π15= \frac{1}{2^5\sin\frac{3\pi}{15}}2\sin\frac{3\pi}{15}\cos\frac{3\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}

    =126sin3π152sin6π15cos6π15cosπ3= \frac{1}{2^6\sin\frac{3\pi}{15}}2\sin\frac{6\pi}{15}\cos\frac{6\pi}{15}\cos\frac{\pi}{3}

    =126sin3π15sin12π15cosπ3= \frac{1}{2^6\sin\frac{3\pi}{15}}\sin\frac{12\pi}{15}\cos\frac{\pi}{3}

    Similarly sin12π15=sin3π15\sin\frac{12\pi}{15} = \sin \frac{3\pi}{15}

    =126cosπ3=127== \frac{1}{2^6}\cos\frac{\pi}{3} = \frac{1}{2^7} = R.H.S.

  37. We have to prove that cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65=164\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = \frac{1}{64}

    =12sinπ652sinπ65cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65= \frac{1}{2\sin\frac{\pi}{65}}2\sin\frac{\pi}{65}\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}

    =12sinπ65sin2π65cos2π65cos4π65cos8π65cos16π65cos32π65= \frac{1}{2\sin\frac{\pi}{65}}\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}

    =122sinπ652sin2π65cos2π65cos4π65cos8π65cos16π65cos32π65= \frac{1}{2^2\sin\frac{\pi}{65}}2\sin\frac{2\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}

    =122sinπ65sin4π65cos4π65cos8π65cos16π65cos32π65= \frac{1}{2^2\sin\frac{\pi}{65}}\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}

    =123sinπ652sin4π65cos4π65cos8π65cos16π65cos32π65= \frac{1}{2^3\sin\frac{\pi}{65}}2\sin\frac{4\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}

    Proceeding similalry we find that above is equal to

    127sinπ65sin64π65\frac{1}{2^7\sin\frac{\pi}{65}}\sin\frac{64\pi}{65}

    However, sin64π65=sinπ65,\sin\frac{64\pi}{65} = \sin\frac{\pi}{65}, therefore

    cosπ65cos2π65cos4π65cos8π65cos16π65cos32π65=164\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = \frac{1}{64}

  38. Given, tanA2=aba+btanB2\tan \frac{A}{2} = \sqrt{\frac{a - b}{a + b}}\tan \frac{B}{2}

    Now, cosA=1tan2A21+tan2A2=1aba+btan2B21+aba+btan2B2\cos A = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{1 - \frac{a - b}{a + b}\tan^2\frac{B}{2}}{1 + \frac{a - b}{a + b}\tan^2\frac{B}{2}}

    =(a+b)cos2B2(ab)sin2B2(a+b)cos2B2+(ab)sin2B2= \frac{(a + b)\cos^2\frac{B}{2} - (a - b)\sin^2\frac{B}{2}}{(a + b)\cos^2\frac{B}{2} + (a - b)\sin^2\frac{B}{2}}

    =acosB+ba+bcosB= \frac{a\cos B + b}{a + b\cos B}

  39. This problem is similar to previous problem with a=1,e=ba = 1, e = b and has been left as an exercise.

  40. Given sinA+sinB=a\sin A + \sin B = a and cosA+cosB=b,\cos A + \cos B = b, we have to prove that sin(A+B)=2aba2+b2\sin(A + B) = \frac{2ab}{a^2 + b^2}

    2ab=2(sinA+sinB)(cosA+cosB)=2sinAcosA+2sinAcosB+2sinBcosA+2sinBcosB=sin2A+sin2B+2sin(A+B)2ab = 2(\sin A + \sin B)(\cos A + \cos B) = 2\sin A\cos A + 2\sin A\cos B + 2\sin B\cos A + 2\sin B\cos B = \sin 2A + \sin 2B + 2\sin(A + B)

    =2sin(A+B)[cos(BA)+1]= 2\sin(A + B)[\cos(B - A) + 1]

    a2+b2=sin2A+sin2B+2sinAsinB+cos2A+cos2B+2cosAcosBa^2 + b^2 = \sin^2A + \sin^2B + 2\sin A\sin B + \cos^2A + \cos^2B + 2\cos A\cos B

    =2+2cos(BA)= 2 + 2\cos(B - A)

    sin(A+B)=2aba2+b2\therefore \sin(A + B) = \frac{2ab}{a^2 + b^2}

  41. Given sinA+sinB=a\sin A + \sin B = a and cosA+cosB=b,\cos A + \cos B = b, we have to prove that cos(AB)=12(a2+b22)\cos(A - B) = \frac{1}{2}(a^2 + b^2 - 2)

    From previous problem, 2cos(BA)=a2+b22cos(AB)=12(a2+b22)2\cos(B - A) = a^2 + b^2 - 2 \Rightarrow \cos(A - B) = \frac{1}{2}(a^2 + b^2 - 2)

  42. Let us solve these one by one.

    1. Given AA and BB be two different roots of equation acosθ+bsinθ=ca\cos\theta + b\sin\theta = c

      acosA+bsinA=ca\cos A + b\sin A = c and acosB+bsinB=ca\cos B + b\sin B = c

      a(cosAcosB)+b(sinAsinB)=0\Rightarrow a(\cos A - \cos B) + b(\sin A - \sin B) = 0

      b(sinAsinB)=a(cosAcosB)b(\sin A - \sin B) = a(\cos A - \cos B)

      b.2cosA+B2sinAB2=a.2sinA+B2sinAB2b.2\cos\frac{A + B}{2}\sin\frac{A - B}{2} = a.2\sin\frac{A + B}{2}\sin \frac{A - B}{2}

      tanA+B2=ba\Rightarrow \tan\frac{A + B}{2} = \frac{b}{a}

      tanA+B=2tanA+B21tan2A+B2=2aba2+b2\tan{A + B} = \frac{2\tan\frac{A + B}{2}}{1 - \tan^2\frac{A + B}{2}} = \frac{2ab}{a^2 + b^2}

    2. We have tan(A+B)=2aba2+b2\tan(A + B) = \frac{2ab}{a^2 + b^2}

      cos(A+B)=a2b2a2+b2\therefore \cos(A + B) = \frac{a^2 - b^2}{a^2 + b^2}

  43. Given cosA+cosB=13\cos A + \cos B = \frac{1}{3} and sinA+sinB=14,\sin A + \sin B = \frac{1}{4}, we have to prove that cosAB2=±524\cos \frac{A - B}{2} = \pm\frac{5}{24}

    Squaring and adding (cos2A+sin2A)+(cos2B+sinB)+2(cosAcosB+sinAsinB)=19+116(\cos^2A + \sin^2A) + (\cos^2B + \sin^B) + 2(\cos A\cos B + \sin A\sin B) = \frac{1}{9} + \frac{1}{16}

    2+2cos(AB)=251442 + 2\cos(A - B) = \frac{25}{144}

    4cos2AB2=25144cosAB2=±5244\cos^2\frac{A - B}{2} = \frac{25}{144} \Rightarrow \cos\frac{A - B}{2} = \pm\frac{5}{24}

  44. Given 2tanA2=tanB2,2\tan \frac{A}{2} = \tan \frac{B}{2}, we have to prove that cosA=3+5cosB5+3cosB\cos A = \frac{3 + 5\cos B}{5 + 3\cos B}

    tanA2=12tanB2\tan\frac{A}{2} = \frac{1}{2}\tan\frac{B}{2}

    cosA=1tan2A21+tan2A2=1tan2B241+tan2B24\cos A = \frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}} = \frac{1 - \frac{\tan^2\frac{B}{2}}{4}}{1 + \frac{\tan^2\frac{B}{2}}{4}}

    =4tan2B24+tan2B2=3+5.1tan2B21+tan2B25+31tan2B21+tan2B2= \frac{4 - \tan^2\frac{B}{2}}{4 + \tan^2\frac{B}{2}} = \frac{3 + 5.\frac{1 - \tan^2\frac{B}{2}}{1 + \tan^2\frac{B}{2}}}{5 + 3\frac{1 - \tan^2\frac{B}{2}}{1 + \tan^2\frac{B}{2}}}

    =3+5cosB5+3cosB== \frac{3 + 5\cos B}{5 + 3\cos B} = R.H.S.

  45. Given sinA=45\sin A = \frac{4}{5} and cosB=513,\cos B = \frac{5}{13}, we have to prove that one value of cosAB2=865\cos \frac{A - B}{2} = \frac{8}{\sqrt{65}}

    cosA=35\cos A = \frac{3}{5} and sinB=1213\sin B = \frac{12}{13}

    cos2AB2=1+cos(AB)2\cos^2\frac{A - B}{2} = \frac{1 + \cos(A - B)}{2}

    cos(AB)=cosAcosB+sinAsinB=1565+4865=6365\cos(A - B) = \cos A\cos B + \sin A\sin B = \frac{15}{65} + \frac{48}{65} = \frac{63}{65}

    1+cos(AB)2=1282.65\frac{1 + \cos(A - B)}{2} = \frac{128}{2.65}

    cosAB2=±865\cos\frac{A - B}{2} = \pm\frac{8}{\sqrt{65}}

  46. Given, sec(A+B)+sec(AB)=2secA,\sec(A + B) + \sec(A - B) = 2\sec A, we have to prove that cosB=±2cosB2\cos B = \pm \sqrt{2}\cos \frac{B}{2}

    L.H.S. =1cos(A+B)+1cos(AB)=cos(AB)+cos(A+B)cos(AB)cos(A+B)= \frac{1}{\cos(A + B)} + \frac{1}{\cos(A - B)} = \frac{\cos(A - B) + \cos (A + B)}{\cos(A - B)\cos(A + B)}

    =4(cosAcosB)cos2A+cos2B= \frac{4(\cos A\cos B)}{\cos 2A + \cos 2B}

    2cosAcosBcos2A+cos2B=1cosA\frac{2\cos A\cos B}{\cos 2A + \cos 2B} = \frac{1}{\cos A}

    2cos2AcosB=2cos2A1+2cos2B12\cos^2A\cos B = 2\cos^2A - 1 + 2\cos^2B - 1

    2cos2A(cosB1)=2(cos2B1)2\cos^2A(\cos B - 1) = 2(\cos^2B - 1)

    cos2A=cosB+1=2cos2B2\cos^2A = \cos B + 1 = 2\cos^2\frac{B}{2}

    cosA=±2cosB2\cos A = \pm\sqrt{2}\cos\frac{B}{2}

  47. Given cosθ=cosαcosβ1sinαsinβ,\cos \theta = \frac{\cos\alpha\cos\beta}{1 - \sin\alpha\sin\beta}, we have to prove that one of the values of tanθ2\tan \frac{\theta}{2} is tanα2tanβ21tanα2tanβ2\frac{\tan \frac{\alpha}{2} - \tan\frac{\beta}{2}}{1 - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}}

    tan2θ2=1cosθ1+cosθ\tan^2\frac{\theta}{2} = \frac{1 - \cos\theta}{1 + \cos\theta}

    =1cosαcosβ1sinαsinβ1+cosαcosβ1sinαsinβ= \frac{1 - \frac{\cos\alpha\cos\beta}{1 - \sin\alpha\sin\beta}}{1 + \frac{\cos\alpha\cos\beta}{1 - \sin\alpha\sin\beta}}

    =1(cosαcosβ+sinαsinβ)1+(cosαcosβsinαsinβ)= \frac{1 - (\cos\alpha\cos\beta + \sin\alpha\sin\beta)}{1 + (\cos\alpha\cos\beta - \sin\alpha\sin\beta)}

    =1cos(αβ)1+cos(α+β)= \frac{1 - \cos(\alpha - \beta)}{1 + \cos(\alpha + \beta)}

    =2sin2αβ22cos2α+β2= \frac{2\sin^2\frac{\alpha - \beta}{2}}{2\cos^2\frac{\alpha + \beta}{2}}

    tanθ2=sinαβ2cosα+β2\tan\frac{\theta}{2} = \frac{\sin\frac{\alpha - \beta}{2}}{\cos\frac{\alpha + \beta}{2}}

    =sinα2cosβ2cosα2cosβ2cosα2cosβ2sinα2sinβ2= \frac{\sin\frac{\alpha}{2}\cos\frac{\beta}{2} - \cos\frac{\alpha}{2}\cos\frac{\beta}{2}}{\cos\frac{\alpha}{2}\cos\frac{\beta}{2} - \sin\frac{\alpha}{2}\sin\frac{\beta}{2}}

    Dividing both numerator and denominator by cosα2cosβ2\cos\frac{\alpha}{2}\cos\frac{\beta}{2}

    tanθ2=tanα2tanβ21tanα2tanβ2\tan\frac{\theta}{2} = \frac{\tan \frac{\alpha}{2} - \tan\frac{\beta}{2}}{1 - \tan\frac{\alpha}{2}\tan\frac{\beta}{2}}

  48. Given tanα=sinθsinϕcosθ+cosϕ,\tan\alpha = \frac{\sin\theta\sin\phi}{\cos\theta + \cos\phi}, we have to prove that one of the values of tanα2\tan\frac{\alpha}{2} is tanθ2tanϕ2\tan\frac{\theta}{2}\tan\frac{\phi}{2}

    2tanα21tan2α2=2tanθ21+tan2θ22tanϕ21+tan2ϕ21tan2θ21+tan2θ2+1tan2ϕ21+tan2ϕ2\Rightarrow \frac{2\tan\frac{\alpha}{2}}{1 - \tan^2\frac{\alpha}{2}} = \frac{\frac{2\tan\frac{\theta}{2}}{1 + \tan^2\frac{\theta}{2}}\frac{2\tan\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2}}}{\frac{1 - \tan^2\frac{\theta}{2}}{1 + \tan^2\frac{\theta}{2}} + \frac{1 - \tan^2\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2}}}

    =4tanθ2tanϕ21+tan2ϕ2tan2θ2tan2ϕ2.tan2θ2+1+tan2θ2tan2ϕ2tan2ϕ2.tan2θ2= \frac{4\tan\frac{\theta}{2}\tan\frac{\phi}{2}}{1 + \tan^2\frac{\phi}{2} - \tan^2\frac{\theta}{2} - \tan^2\frac{\phi}{2}.\tan^2\frac{\theta}{2} + 1 + \tan^2\frac{\theta}{2} -\tan^2\frac{\phi}{2} - \tan^2\frac{\phi}{2}.\tan^2\frac{\theta}{2}}

    =2tanθ2tanϕ21tan2θ2tan2ϕ2= \frac{2\tan\frac{\theta}{2}\tan\frac{\phi}{2}}{1 - \tan^2\frac{\theta}{2}\tan^2\frac{\phi}{2}}

    Solving this quadratic equationin tanα2\tan\frac{\alpha}{2} we obtain the desired result.

  49. Given cosθ=cosα+cosβ1+cosαcosβ,\cos\theta = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta}, we have to prove that one of the values of tanθ2\tan\frac{\theta}{2} is tanα2tanβ2\tan\frac{\alpha}{2}\tan\frac{\beta}{2}

    cosθ=cosα+cosβ1+cosαcosβ\cos\theta = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta}

    1tan2θ21+tan2θ2=cosα+cosβ1+cosαcosβ\frac{1 - \tan^2\frac{\theta}{2}}{1 + \tan^2\frac{\theta}{2}} = \frac{\cos\alpha + \cos\beta}{1 + \cos\alpha\cos\beta}

    tan2θ2=1cosαcosβcosα+cosβ1cosαcosβ+cosαcosβ\tan^2\frac{\theta}{2} = \frac{1 - \cos\alpha\cos\beta - \cos\alpha + \cos\beta}{1 - \cos\alpha\cos\beta + \cos\alpha - \cos\beta}

    =(1cosα)(1+cosβ)(1+cosα)(1+cosβ)= \frac{(1 - \cos\alpha)(1 + \cos\beta)}{(1 + \cos\alpha)(1 + \cos\beta)}

    tan2θ2=tan2α2cot2β2\tan^2\frac{\theta}{2} = \tan^2\frac{\alpha}{2}\cot^2\frac{\beta}{2}

    tanθ2=±tanα2cotβ2\tan\frac{\theta}{2} = \pm\tan\frac{\alpha}{2}\cot\frac{\beta}{2}