Let us solve these one by one.
Given, cosA=53
⇒sinA=1−cos2A=1−259=2516=54
sin2A=2sinAcosA=2.54.53=2524
Given, sinA=1312
⇒cosA=1−sin2A=1−169144=16925=135
sin2A=2sinAcosA=2.1312.135=169120
Given, tanA=6316=baseperpendicular
hypotenuse=p2+b2=162+632=65
sinA=6516,cosA=6563
sin2A=2sinAcosA=2.6516.6563=42252016
Let us solve these one by one.
Given, cosA=1715
⇒sinA=1−cos2A =1−289225=28964=178
cos2A=cos2A−sin2A=289225−64=289161
Given, sinA=54
⇒cosA=1−sin2A =1−2516=53
cos2A=cos2A−sin2A=259−16=−257
Give, tanA=125=baseperpendicular
hypotenuse=p2+b2=25+144=13
sinA=135,cosA=1312
cos2A=cos2A−sin2A=169119
Given, tanA=ab, thus hypotenuse=b2+a2
acos2A+bsin2A=a(cos2A−sin2A)+2bsinAcosA
=a(a2+b2a2−a2+b2b2)+2b.a2+b2ab
=a(a2+b2a2−b2+2b2)=a
We have to prove that 1+cos2Asin2A=tanA
L.H.S. =1+cos2Asin2A=1+cos2A−sin2A2sinAcosA
=2cos2A2sinAcosA[∵1−sin2A=cos2A]
=tanA= R.H.S.
We have to prove that 1−cos2Asin2A=cotA
L.H.S. =1−cos2Asin2A=1−(cos2A−sin2A)2sinAcosA
=2sin2A2sinAcosA=cotA= R.H.S.
We have to prove that 1+cos2A1−cos2A=tan2A
L.H.S. =1+cos2A−sin2A1−(cos2A−sin2A)
=2cos2A2sin2A=tan2A= R.H.S.
We have to prove that tanA+cotA=2cosec2A
L.H.S. =cosAsinA+sinAcosA=sinAcosAsin2A+cos2A
=2sinAcosA2=sin2A2=2cosec2A= R.H.S.
We have to prove that tanA−cotA=−2cot2A
L.H.S. =cosAsinA−sinAcosA=sinAcosAsin2A−cos2A
=2sin2A−cos2A=−2cot2A= R.H.S.
We have to prove that cosec2A+cot2A=cotA
L.H.S. =sin2A1+sin2Acos2A=sin2A1+cos2A=2sinAcosA2cos2A
=cotA= R.H.S.
We have to prove that 1+cosA−cosB−cos(A+B)1−cosA+cosB−cos(A+B)=tan2Acot2B
L.H.S. =1+cosA−cosB−cos(A+B)1−cosA+cosB−cos(A+B)
=2cos22A−2cos2Acos(2A+B)2sin22A+2sin2Asin(2A+B)
=cos2A(cos2A−cos(2A+B))sin2A(sin2A+sin(2A+B))
=2sin(2A+B)sin2Btan2A(2sin(2A+B)cos2B)
=tan2Acot2B
We have to prove that 1∓sinAcosA=tan(45∘±2A)
First considering − sign on L.H.S.,
L.H.S. =1−sinAcosA=(cos2A−sin2A)2cos22A−sin22A
Dividing numerator and denomiator by cos22A
=(1−tan2A)21−tan22A
=1−tan2A1+tan2A
=1−tan45∘tan2Atan45∘+tan2A=tan(45∘+2A)
Similarly by considering the + sign we can prove the other sign.
We have to prove that sec4A−1sec8A−1=tan2Atan8A
L.H.S. =sec4A−1sec8A−1=1−cos4A1−cos8A.cos8Acos4A
=2sin22A2sin24A.cos8Acos4A=2sin22A.cos8A(2sin4Acos4A).sin4A
=cos8Asin8A.2sin22Asin4A=2sin22Atan8A.2sin2Acos2A=tan2Atan8A=
R.H.S.
We have to prove that 1−tan2(45∘−A)1+tan2(45∘−A)=cosec2A
L.H.S. =1−tan2(45∘−A)1+tan2(45∘−A)
=cos2(45∘−A)−sin2(45∘−A)cos2(45∘−A)+sin2(45∘−A)
=cos(90∘−2A)1=sin2A1=cosec2A= R.H.S.
We have to prove that sinA−sinBsinA+sinB=tan2A−Btan2A+B
L.H.S. =sinA−sinBsinA+sinB=2cos2A+Bsin2A−B2sin2A+Bcos2A−B
=tan2A−Btan2A+B= R.H.S.
We have to prove that sinAcosA−sinBcosBsin2A−sin2B=tan(A+B)
L.H.S. =sin2A−sin2B2(cos2B−cos2A)=sin2A−sin2Bcos2B−cos2A
=cos(A+B)sin(A−B)sin(A+B)sin(A−B)=tan(A+B)= R.H.S.
We have to prove that tan(4π+A)−tan(4π−A)=2tan2A
L.H.S. =1−tanA1+tanA−1+tanA1−tanA
=1−tan2A(1+tanA)2−(1−tanA)2=1−tan2A4tanA
=cosA4sinA.cos2A−sin2Acos2A=cos2A2sin2A=2tan2A= R.H.S.
We have to prove that cosA−sinAcosA+sinA−cosA+sinAcosA−sinA=2tan2A
L.H.S. =cos2A−sin2A(cosA+sinA)2−(cosA−sinA)2
=cos2A4cosAsinA=cos2A2sin2A=2tan2A= R.H.S.
We have to prove that cot(A+15∘)−tan(A−15∘)=1+2sin2A4cos2A
L.H.S. =tan(A+15∘)1−tan(A+15∘)tan(A−15∘)
=cos(A+15∘)cos(A−15∘)cos(A+15∘)cos(A−15∘)−sin(A+15∘)sin(A−15∘).sin(A+15∘)cos(A+15∘)
=sin(A+15∘)cos(A−15∘)cos2A=2sin(A+15∘)cos(A−15∘)2cos2A
=sin2A+sin30∘2cos2A=1+sin2A4cos2A= R.H.S.
We have to prove that 1+cosA+cos2AsinA+sin2A=tanA
L.H.S. =cosA+2cos2AsinA+2sinAcosA=cosA(1+2cosA)sinA(1+2cosA)
=tanA= R.H.S.
We have to prove that 1+sinA+cosA1+sinA−cosA=tan2A
L.H.S. =2cos22A+2sin2Acos2A2sin22A+2sin2Acos2A
=cos2A(sin2A+cos2A)sin2A(sin2A+cos2A)
=tan2A= R.H.S.
We have to prove that cos(n+1)A+2cosnA+cos(n−1)Asin(n+1)A−sin(n−1)A=tan2A
L.H.S. =2cosnAcosA+2cosnA2cosnAsinA=1+cosAsinA
=2cos22A2sin2Acos2A=tan2A= R.H.S.
We have to prove that cos(n−1)−cos(n+1)Asin(n+1)A+2sinnA+sin(n−1)A=cot2A
L.H.S. =2sinnAsinA2sinnAcosA+2sinnA
=sinAcosA+1=2sin2Acos2A2cos22A
=cot2A= R.H.S.
We have to prove that sin(2n+1)AsinA=sin2(n+1)A−sin2nA
R.H.S. =(sin(n+1)A+sinnA)(sin(n+1)A−sinnA)
=(2sin22n+1Acos2A)(2cos22n+1Asin2A)
=2sin22n+1Acos22n+1A.2cos2Asin2A
=sin(2n+1)AsinA= L.H.S.
We have to prove that sin2A+sin2Bsin(A+3B)+sin(3A+B)=2cos(A+B)
L.H.S. =sin2A+sin2Bsin(A+3B)+sin(3A+B)
=2sin(A+B)cos(A−B)2sin(2A+2B)cos(A−B)
=sin(A+B)2sin(A+B)cos(A+B)=2cos(A+B)= R.H.S.
We have to prove that sin3A+sin2A−sinA=4sinAcos2Acos23A
L.H.S. =2cos2AsinA+2sinAcosA=2sinA(cos2A+cosA)
=2sinAcos23Acos2A= R.H.S.
We have to prove that tan2A=(sec2A+1)sec2A−1
R.H.S. =cos2A1+cos2Acos2A1−cos2A
=2cos2A−12cos2A.cos2Asin2A
=2−sec2A2.tanA=1−tan2A2tanA=1−tanA.tanAtanA+tanA
=tan2A= R.H.S.
We have to prove that cos32A+3cos2A=4(cos6A−sin6A)
L.H.S. =(cos2A−sin2A)3+3(cos2A−sin2A)
=cos6A−3cos4Asin2A+3cos2Asin4A−sin6A+3(cos2A−sin2A)
=cos6A−3cos4A(1−cos2A)+3(1−sin2A)sin4A−sin6A+3(cos2A−sin2A)
=4(cos6A−sin6A)= R.H.S.
We have to prove that 1+cos22A=2(cos4A+sin4A)
L.H.S. =1+(cos2A−sin2A)2=1−2sin2Acos2A+cos4A+sin4A
=1−2sin2A(1−sin2A)+cos4A+sin4A
=1−2sin2A+2sin4A+cos4A+sin4A
=(1−sin2A)2+cos4A+2sin4A=2(cos4A+sin4A)= R.H.S.
We have to prove that sec2A(1+sec2A)=2sec2A
L.H.S. =cos2A1.cos2Acos2A+1
=cos2A1.cos2A2cos2A=2sec2A= R.H.S.
We have to prove that cosecA−2cot2AcosA=2sinA
L.H.S. =sinA1−sin2A2cos2AcosA
=sinA1−2sinAcosA2cos2AcosA
sinA1−sinAcos2A=sinA1−cos2A
=sinA2sin2A=2sinA= R.H.S.
We have to prove that cotA=21(cot2A−tan2A)
R.H.S. =21(tan2A1−tan22A)
=21(cos22Acos22A−sin22A).sin2Acos2A
=21cos2AcosA.sin2A1=cotA= L.H.S.
We have to prove that sinAsin(60∘−A)sin(60∘+A)=41sin3A
L.H.S. =sinA.2cos2A−cos120∘=2sinA(1−2sin2A+21)
=43sinA−4sin3A=41sin3A= R.H.S.
We have to prove that cosAcos(60∘−A)cos(60∘+A)=41cos3A
L.H.S. =2cosA(cos2A+cos120∘)=2cosA(2cos2A−1−21)
=44cos3A−3cosA=41cos3A= R.H.S.
We have to prove that cotA+cot(60∘+A)−cot(60∘−A)=3cot3A
L.H.S. =tanA1+tan(60∘+A)1−tan(60∘−A)1
=tanA1+3+tanA1−3tanA−3−tanA1+3tanA
=tanA1−3−tan2A8tanA=3tanA−tan3A3(1−3tan2A)=tan3A3
=3cot3A= R.H.S.
We have to prove that cos4A=1−8cos2A+8cos4A
L.H.S. =cos4A=2cos22A−1=2(2cos2A−1)2−1
=2(4cos4A−4cos2A+1)−1
=1−8cos2A+8cos4A= R.H.S.
We have to prove that sin4A=4sinAcos3A−4cosAsin3A
L.H.S. =2sin2Acos2A=4sinAcosA(cos2A−sin2A)
=4sinAcos3A−4cosAsin3A= R.H.S.
We have to prove that cos6A=32cos6A−48cos4A+18cos2A−1
L.H.S. =cos6A=(cos23A−sin23A)=(4cos3A−3cosA)2−(3sinA−4sin3A)2
=16cos6A+9cos2A−24cos4A−9sin2A−16sin6A+24sin4A
=16cos6A+9cos2A−24cos4A−9(1−cos2A)−16(1−cos2A)3+24(1−cos2A)2
=32cos6A−48cos4A+18cos2A−1= R.H.S.
We have to prove that tan3Atan2AtanA=tan3A−tan2A−tanA
Rewriting this as following:
tanA+tan2A=tan3A(1−tanAtan2A)⇒1−tanAtan2AtanA+tan2A=tan3A
⇒tan(A+2A)=tan3A
Hence, proved.
We have to prove that 2cosA+12cos2nA+1=(2cosA−1)(2cos2A−1)(2cos22A−1)…(2cos2n−1−1)
L.H.S. =2cosA+12cos2nA+1
Multiplying and dividing by 2cosA−1
=(2cosA−1)4cos2A−12cos2nA+1=(2cosA−1)2cos2A+12cos2nA+1
Multiplying and dividing by 2cos2A−1
=(2cosA−1)(2cos2A−1)4cos22A−12cos2nA+1
=(2cosA−1)(2cos2A−1)2cos22A+12cos2nA+1
Proceeding similarly we obtain the R.H.S.
Given tanA=71,sinB=101
∴cosB=103,tanB=31
tan(A+2B)=1−tanAtan2BtanA+tan2B
=1−tanA.1−tan2B2tanBtanA+1−tan2B2tanB
=1−71.1−9123171+1−91231
=1∴A+2B=4π
We have to prove that tan(4π+A)+tan(4π−A)=2sec2A
L.H.S. =1−tanA1+tanA+1+tanA1−tanA
=1−tan2A(1+tanA)2+(1−tanA)2=1−tan2A2+2tan2A
=cos2A−sin2A2(sin2A+cos2A)=cos2A2=2sec2A= R.H.S.
We have to prove that 3cosec20∘−sec20∘=4
L.H.S. =sin20∘3−cos20∘1
=2sin20∘cos20∘4(23)cos20∘−21sin20∘
=sin40∘4(sin(50∘−20∘))=4= R.H.S.
We have to prove that tanA+2tan2A+4tan4A+8cot8A=cotA
tanA−cotA=sinAcosAsin2A−cos2A=−sin2A2cos2A=−2cot2A
Similarly, 2tan2A−2cot2A=−4cot4A
and 4tan4A−4cot4A=−8cot8A
Thus, tanA+2tan2A+4tan4A+8cot8A=cotA
We have to prove that cos2A+cos2(32π−A)+cos2(32π+A)=23
⇒2cos2A+2cos2(32π−A)+2cos2(32π+A)=3
L.H.S. =cos2A+1+cos(34π−2A)+1+cos(34π+2A)+1
=3+cos2A+2cos(34π)cos2A=3= R.H.S.
2sin2A+4cos(A+B)sinAsinB+cos2(A+B)
=2sin2A+2cos(A+B)2sinAsinB+cos2(A+B)
=2sin2A+2cos(A+B)[cos(A−B)−cos(A+B)]+cos2(A+B)
=2sin2A+2cos(A+B)cos(A−B)−2cos2(A+B)+cos2(A+B)
=2sin2A+2(cos2A−sin2B)−2cos2(A+B)+2cos2(A+B)−1
=2(sin2A+cos2A)−2sin2B−1=1−2sin2B which is independent of A
Given, cosA=21(a+a1)
cos2A=2cos2A−1=2.41(a+a1)2−1
=21(a2+a21)
We have to prove that cos2A+sin2Acos2B=cos2B+sin2Bcos2A
⇒cos2A−cos2B=sin2Bcos2A−sin2Acos2B
R.H.S. =sin2Bcos2A−sin2Acos2B
=sin2B(cos2A−sin2A)−sin2A(cos2B−sin2B)
=cos2Asin2B−sin2Acos2B=cos2A(1−cos2B)−(1−cos2A)cos2B
=cos2A−cos2B= R.H.S.
We have to prove that 1+tanAtan2A=sec2A
L.H.S. =1+tanAtan2A=1+tanA.1−tan2A2tanA
=1−tan2A1+tan2A=cos2A−sin2Acos2A+sin2A
=cos2A1=sec2A= R.H.S.
We have to prove that 1−sin2A1+sin2A=(1−tanA1+tanA)2
L.H.S. =1−sin2A1+sin2A=sin2A+cos2A−2sinAcosAsin2A+cos2A+2sinAcosA
=(sinA−cosAsinA+cosA)2
Dividing numerator and denominator by cos2A, we get
=(1−tanA1+tanA)2= R.H.S.
We have to prove that sin10∘1−cos10∘3=4
L.H.S. =sin10∘1−cos10∘3