20. Properties of Triangles’ Solutions Part 3#

  1. The diagram is given below:

    Problem 101

    Let BD=DE=EC=x.BD = DE = EC = x. Also let,

    BAD=α,DAE=β,EAC=γ,CEA=θ\angle BAD = \alpha, \angle DAE = \beta, EAC = \gamma, CEA = \theta

    Given, tanα=t1,tanβ=t2,tanγ=t3\tan\alpha = t_1, \tan\beta = t_2, \tan\gamma = t_3

    Applying m:nm:n rule in ABC,\triangle ABC, we get

    (2x+x)cotθ=2xcot(α+β)xcotγ(2x + x)\cot\theta = 2x\cot(\alpha + \beta) - x\cot\gamma

    From ADC,\triangle ADC, we get

    2xcotθ=xcotβxcotγ2x\cot\theta = x\cot\beta - x\cot\gamma

    32=2(α+β)cotγcotβcotγ\Rightarrow \frac{3}{2} = \frac{2(\alpha + \beta) - \cot\gamma}{\cot\beta - \cot\gamma}

    3cotβ3cotγ=4cot(α+β)2cotγ\Rightarrow 3\cot\beta - 3\cot\gamma = 4\cot(\alpha + \beta) - 2\cot\gamma

    3cotβcotγ=4(cotαcotβ1)cotα+cotβ3\cot\beta - \cot\gamma = \frac{4(\cot\alpha\cot\beta - 1)}{\cot\alpha + \cot\beta}

    3cot2βcotβcotγ+3cotαcotβcotαcotγ=4cotαcotβ43\cot^2\beta - \cot\beta\cot\gamma + 3\cot\alpha\cot\beta - \cot\alpha\cot\gamma = 4\cot\alpha\cot\beta - 4

    4+4cot2β=cot2β+cotαcotβ+cotβcotγ+cotαcotγ4 + 4\cot^2\beta = \cot^2\beta + \cot\alpha\cot\beta + \cot\beta\cot\gamma + \cot\alpha\cot\gamma

    4(1+cot2β)=(cotβ+cotα)(cotβ+cotγ)4(1 + \cot^2\beta) = (\cot\beta + \cot\alpha)(\cot\beta + \cot\gamma)

    4(1+1t22)=(1t1+1t2)(1t2+1t3)4\left(1 + \frac{1}{t_2^2}\right) = \left(\frac{1}{t_1} + \frac{1}{t_2}\right)\left(\frac{1}{t_2} + \frac{1}{t_3}\right)

  2. The diagram is given below:

    Problem 102

    Let the medians be AD,BEAD, BE and CFCF meet at O.O. From question,

    BOC=α,COA=β,AOB=γ\angle BOC=\alpha, \angle COA = \beta, \angle AOB = \gamma

    Let AD=p1,BE=p2,CF=p3AD = p_1, BE=p_2, CF = p_3

    AO:OD=2:1AO=23p1AO:OD = 2:1 \Rightarrow AO = \frac{2}{3}p_1

    Similalrly, OB=23p2,OC=23p3OB = \frac{2}{3}p_2, OC = \frac{2}{3}p_3

    Applying cosine rule in AOC,\triangle AOC,

    cosβ=OA2+OC2AC22.OA.OC=49p12+49p32b22.23p123p3\cos\beta = \frac{OA^2 + OC^2 - AC^2}{2.OA.OC} = \frac{\frac{4}{9}p_1^2 + \frac{4}{9}p_3^2 - b^2}{2.\frac{2}{3}p_1\frac{2}{3}p_3}

    cosβ=4p12+4p329b28p1p3\cos\beta = \frac{4p_1^2 + 4p_3^2 - 9b^2}{8p_1p_3}

    ΔAOC=12.OA.OC.sinβ\Delta AOC = \frac{1}{2}.OA.OC.\sin\beta

    13Δ=1223p123p3sinβ\frac{1}{3}\Delta = \frac{1}{2}\frac{2}{3}p_1\frac{2}{3}p_3\sin\beta where Δ\Delta is area of triangle ABC.ABC.

    sinβ=3Δ2p1p3\sin\beta = \frac{3\Delta}{2p_1p_3}

    cosβ=4p12+4p329b212Δ\Rightarrow \cos\beta = \frac{4p_1^2 + 4p_3^2 - 9b^2}{12\Delta}

    AD\because AD is mean of ABC\triangle ABC

    AB2+AC2=2BD2+2AD2\therefore AB^2 + AC^2 = 2BD^2 + 2AD^2

    b2+c2=2a24+2p12\Rightarrow b^2 + c^2 = 2\frac{a^2}{4} + 2p_1^2

    p12=2b2+2c2a24p_1^2 = \frac{2b^2 + 2c^2 - a^2}{4}

    Similarly, p22=2c2+2a2b24p_2^2 = \frac{2c^2 + 2a^2 - b^2}{4}

    and p32=2a2+2b2c24p_3^2 = \frac{2a^2 + 2b^2 - c^2}{4}

    cosβ=(2b2+2c2a2)+(2a2+2b2c2)9b212Δ\Rightarrow \cos\beta = \frac{(2b^2 + 2c^2 - a^2) + (2a^2 + 2b^2 - c^2) - 9b^2}{12\Delta}

    =a2+c25b212Δ= \frac{a^2 + c^2 - 5b^2}{12\Delta}

    Similarly, cosα=b2+c25a212Δ\cos\alpha = \frac{b^2 + c^2 - 5a^2}{12\Delta}

    Similarly, cosγ=a2+b25c212Δ\cos\gamma = \frac{a^2 + b^2 - 5c^2}{12\Delta}

    cosα+cosβ+cosγ=3(a2+b2+c2)12Δ\cos\alpha + \cos\beta + \cos\gamma = \frac{-3(a^2 + b^2 + c^2)}{12\Delta}

    =a2+b2+c24Δ= -\frac{a^2 + b^2 + c^2}{4\Delta}

    cotA+cotB+cotC=b2+c2a22bcsinA+c2+a2b22casinB+a2+b2c22absinC\cot A + \cot B + \cot C = \frac{b^2 + c^2 - a^2}{2bc\sin A} + \frac{c^2 + a^2 - b^2}{2ca\sin B} + \frac{a^2 + b^2 - c^2}{2ab\sin C}

    =a2+b2+c24Δ= \frac{a^2 + b^2 + c^2}{4\Delta}

    cotα+cotβ+cotγ+cotA+cotB+cotC=0\Rightarrow \cot\alpha + \cot\beta + \cot\gamma + \cot A + \cot B + \cot C = 0

  3. The diagram is given below:

    Problem 103

    Let ADAD be the perpendicular from AA on BC.BC. When ADAD is extended it meets the circumscrbing circle at E.E. Given, DE=α.DE=\alpha.

    Since angles in the same segment are equal, AEB=ACB=C\therefore \angle AEB = \angle ACB = \angle C

    and AEC=ABC=B\angle AEC = \angle ABC = \angle B

    From right angled BDE,tanC=BDDE\triangle BDE, \tan C = \frac{BD}{DE}

    From right angled CDE,tanB=CDDE\triangle CDE, \tan B = \frac{CD}{DE}

    tanB+tanC=aα\tan B + \tan C = \frac{a}{\alpha}

    Similarly, tanC+tanA=bβ\tan C + \tan A = \frac{b}{\beta}

    and tanA+tanB=cγ\tan A + \tan B = \frac{c}{\gamma}

    Adding, we get

    aα+bβ+cγ=2(tanA+tanB+tanC)\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 2(\tan A + \tan B + \tan C)

  4. The diagram is given below:

    Problem 104

    Let HH be the orthocenter of triangle ABC.ABC.

    From question, HA=p,HB=q,HC=r.HA = p, HB = q, HC = r.

    From figure, HBD=EBC=90C\angle HBD = \angle EBC = 90^\circ - C

    HCD=FCB=90B\angle HCD = \angle FCB = 90^\circ - B

    BHC=180(HBD+HCD)\therefore \angle BHC = 180^\circ - (\angle HBD + \angle HCD)

    =180[90C+90B]=B+C=πA= 180^\circ - [90^\circ - C + 90^\circ - B] = B + C = \pi - A

    Similarly, AHC=πB\angle AHC = \pi - B and AHB=πC\angle AHB = \pi - C

    Now ΔBHC+ΔCHA+ΔAHB=ΔABC\Delta BHC + \Delta CHA + \Delta AHB = \Delta ABC

    12[qrsinBHC+rpsinCHA+pqsinAHB]=Δ\Rightarrow \frac{1}{2}[qr\sin BHC + rp\sin CHA + pq \sin AHB] = \Delta

    12[qrsinA+rpsinB+pqsinC]=Δ\Rightarrow \frac{1}{2}[qr\sin A + rp\sin B + pq\sin C] = \Delta

    aqr+brp+cpq=abc\Rightarrow aqr + brp + cpq = abc

  5. The diagram is given below:

    Problem 105

    Let OO be the center of unit circle and AA be the center of circle whose arc BPCBPC divides the unit circle in two equal parts.

    i.e area of the curve ABPCA=12ABPCA = \frac{1}{2} area of the unit circle =π2= \frac{\pi}{2}

    Let the radius of this new circle be r.r.

    Then, AC=AB=AP=rAC = AB = AP = r

    OB=OC=1OCA=OAC=θ\because OB = OC = 1 \therefore \angle OCA = \angle OAC = \theta

    Applying sine rule in AOC,\triangle AOC,

    rsin(π2θ)=1sinθ\frac{r}{\sin(\pi -2\theta)} = \frac{1}{\sin\theta}

    r=2cosθr = 2\cos\theta

    Now area of ABPCA=2[ABPCA = 2[ Are of sector ACP+ACP + Area of sector OACOAC - Are of OAC]\triangle OAC]

    =2[12r2θ+1212(π2θ)12sin(π2θ)]= 2\left[\frac{1}{2}r^2\theta + \frac{1}{2}1^2(\pi - 2\theta) - \frac{1}{2}\sin(\pi -2\theta)\right]

    =θ.4cos2θ+π2θsin2θ[r=2cosθ]=\theta. 4\cos^2\theta + \pi - 2\theta - \sin2\theta [\because r = 2\cos\theta]

    =2θcos2θsin2θ+π= 2\theta\cos2\theta - \sin2\theta + \pi

    π2=2θcos2θsin2θ+π\Rightarrow \frac{\pi}{2} = 2\theta\cos2\theta - \sin2\theta + \pi

    π2=sin2θ2θcos2θ\Rightarrow \frac{\pi}{2} = \sin2\theta - 2\theta\cos2\theta

  6. The diagram is given below:

    Problem 106

    Let EFEF be the perpendicular bisector of BCBC and OO the center of the square. From question,

    Let BF=FC=aBC=EF=2aBF = FC = a \Rightarrow BC = EF = 2a and OE=OF=aOE=OF = a

    Let OP=xOQ=xOP = x \Rightarrow OQ = x

    PF=ax,QF=a+x\Rightarrow PF = a - x, QF = a + x

    From right angled BPF,\triangle BPF,

    tanB=PFBF=axx\tan B = \frac{PF}{BF} = \frac{a - x}{x}

    From right angled QFC,\triangle QFC,

    tanC=a+xa\tan C = \frac{a + x}{a}

    (tanBtanC)2=4x2a2\Rightarrow (\tan B - \tan C)^2 = \frac{4x^2}{a^2}

    In triangle ABC,ABC,

    tanA=tan[π(B+C)]=tan(B+C)=2a2x2\tan A = \tan[\pi - (B + C)] = -\tan(B + C) = -\frac{2a^2}{x^2}

    tanA(tanBtanC)2+8=0\Rightarrow \tan A(\tan B - \tan C)^2 + 8 = 0

  7. The diagram is given below:

    Problem 107

    CD\because CD is internal bisector of C\angle C

    ADDB=ba\therefore \frac{AD}{DB} = \frac{b}{a}

    BD=aca+b\Rightarrow BD = \frac{ac}{a + b}

    Since angles of the same segment are equal.

    ABE=ACE=C2\therefore \angle ABE = \angle ACE = \frac{C}{2}

    and BEC=BAC=A\angle BEC = \angle BAC = A

    Applying sine rule in BEC,\triangle BEC,

    CEsinCBE=BCsinBECCE=asin(a+C2)sinA\frac{CE}{\sin CBE} = \frac{BC}{\sin BEC} \Rightarrow CE = \frac{a\sin\left(a + \frac{C}{2}\right)}{\sin A}

    Applying sine rule in BDE,\triangle BDE,

    DEsinC2=BDsinADE=acsinC2(a+b)sinA\frac{DE}{\sin\frac{C}{2}} = \frac{BD}{\sin A}\Rightarrow DE = \frac{ac\sin\frac{C}{2}}{(a + b)\sin A}

    CEDE=asin(B+C2)acsinC2(a+b)\Rightarrow \frac{CE}{DE} = \frac{a\sin\left(B + \frac{C}{2}\right)}{ac\sin\frac{C}{2}}(a + b)

    CEDE=(a+b)sin(B+C2)csinC2\Rightarrow \frac{CE}{DE} = \frac{(a + b)\sin\left(B + \frac{C}{2}\right)}{c\sin \frac{C}{2}}

    Now, sin(B+C2)sinC2=sin(B+C2).2cosC22sinC2cosC2\frac{\sin\left(B + \frac{C}{2}\right)}{\sin\frac{C}{2}} = \frac{\sin\left(B + \frac{C}{2}\right).2\cos\frac{C}{2}}{2\sin\frac{C}{2}\cos\frac{C}{2}}

    =sin(B+C)+sinBsinC=sinA+sinBsinC=a+bc= \frac{\sin(B + C)+ \sin B}{\sin C} = \frac{\sin A + \sin B}{\sin C} = \frac{a + b}{c}

    Thus, CEDE=(a+b)2c2\frac{CE}{DE} = \frac{(a + b)^2}{c^2}

  8. The diagram is given below:

    Problem 108

    AD\because AD is the interna; bisector of angle A,A,

    BDDC=BAAC=cb\frac{BD}{DC} = \frac{BA}{AC} = \frac{c}{b}

    BDc=DCb=BD+DCb+c\Rightarrow \frac{BD}{c} = \frac{DC}{b} = \frac{BD + DC}{b + c}

    BDc=ab+c\Rightarrow \frac{BD}{c} = \frac{a}{b + c}

    Similarly, BFa=ca+b\frac{BF}{a} = \frac{c}{a + b}

    Now ΔBDFΔABC=BD.BF.sinBa.c.sinB=ac(a+b)(b+c)\frac{\Delta BDF}{\Delta ABC} = \frac{BD.BF.\sin B}{a.c.\sin B} = \frac{ac}{(a + b)(b + c)}

    Similarly, ΔCDEΔABC=ab(a+c)(b+c)\frac{\Delta CDE}{\Delta ABC} = \frac{ab}{(a + c)(b + c)}

    and ΔAEFΔABC=bc(a+b)(a+c)\frac{\Delta AEF}{\Delta ABC} = \frac{bc}{(a + b)(a + c)}

    ΔDEFΔABC=ΔABC(ΔBDF+ΔCDE+ΔAEF)ΔABC\therefore \frac{\Delta DEF}{\Delta ABC} = \frac{\Delta ABC - (\Delta BDF + \Delta CDE + \Delta AEF)}{\Delta ABC}

    =1ac(a+b)(b+c)ab(a+c)(b+c)bc(a+b)(a+c)= 1 - \frac{ac}{(a + b)(b + c)} - \frac{ab}{(a + c)(b + c)} - \frac{bc}{(a + b)(a + c)}

    =2abc(a+b)(b+c)(c+a)= \frac{2abc}{(a + b)(b + c)(c + a)}

    ΔDEF=2.Δ.abc(a+b)(b+c)(c+a)\Delta DEF = \frac{2.\Delta .abc}{(a + b)(b + c)(c + a)}

  9. The diagram is given below:

    Problem 109

    A+B+C=π3α+3β+3γ=πα+β+γ=π3\because A + B + C = \pi \Rightarrow 3\alpha + 3\beta + 3\gamma = \pi \Rightarrow \alpha + \beta + \gamma = \frac{\pi}{3}

    Clearly, ADB=60\angle ADB = 60^\circ

    Applying sine rule in ADB,\triangle ADB,

    ARsinβ=csin[π(α+β)]\frac{AR}{\sin\beta} = \frac{c}{\sin[\pi - (\alpha + \beta)]}

    AR=csinβsin(α+β)=2RsinCsinβsin(α+β)AR = \frac{c\sin \beta}{\sin(\alpha + \beta)} = \frac{2R\sin C\sin\beta}{\sin(\alpha + \beta)}

    =2Rsin3γsinβsin(60γ)= \frac{2R\sin3\gamma\sin\beta}{\sin(60^\circ - \gamma)}

    =2R(3sinγ4sin3γ)sinβsin(60γ).cos(30γ)cos(30γ= \frac{2R(3\sin\gamma - 4\sin^3\gamma)\sin\beta}{\sin(60^\circ - \gamma)}.\frac{\cos(30^\circ - \gamma)}{cos(30^\circ - \gamma}

    =4Rsinβsinγ.(34sin2γ).cos(30γ)sin(092γ)+sin30= \frac{4R\sin\beta\sin\gamma.(3 - 4\sin^2\gamma).\cos(30^\circ - \gamma)}{\sin(09^\circ - 2\gamma) + \sin 30^\circ}

    =4Rsinβsinγcos(30γ)(34sin2γ)cos2γ+12= \frac{4R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{\cos2\gamma + \frac{1}{2}}

    =8Rsinβsinγcos(30γ)(34sin2γ)2cos2γ+1= \frac{8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{2\cos2\gamma + 1}

    =8Rsinβsinγcos(30γ)(34sin2γ)2(12sin2γ)+1= \frac{8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{2(1 - 2\sin^2\gamma) + 1}

    =8Rsinβsinγcos(30γ)= 8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)

  10. The diagram is given below:

    Problem 110

    From figure, AOX=π2θ\angle AOX = \frac{\pi}{2} - \theta

    Since OXOX is tangent to the circle, OBOB will pass through the center PP of the circle and hence OBOB will be the diameter of the given circle.

    OAB=90OBA=90θ\Rightarrow \angle OAB = 90^\circ \Rightarrow \angle OBA = 90^\circ - \theta

    By property of circle, OAQ=OBA=90θOAQ = \angle OBA = 90^\circ - \theta

    Also, AOQ=90theta[OQ=OA]AOQ = 90^\circ - theta[\because OQ = OA]

    OQA=2θAQX=π2θ\therefore OQA = 2\theta \Rightarrow AQX = \pi - 2\theta

    BOX=π1\angle BOX = \frac{\pi}{1}

    Applying sine rule in ABT,weget\triangle ABT, we get

    ABsin(π2θ)=ATsinθ\frac{AB}{\sin(\pi - 2\theta)} = \frac{AT}{\sin\theta}

    ABsin2θ=tsinθAB=2tcosθ\frac{AB}{\sin2\theta} = \frac{t}{\sin\theta} \Rightarrow AB = 2t\cos\theta

    From right angled AOB,\triangle AOB,

    tanθ=ABOAAB=ctanθ\tan\theta = \frac{AB}{OA} \Rightarrow AB = c\tan\theta

    ctanθ=2tcosθ\Rightarrow c\tan\theta = 2t\cos\theta

    csinθt(1+cos2θ)=0\Rightarrow c\sin\theta - t(1 + \cos2\theta) = 0

    Let ANOBAN\perp OB

    Now, ON+NB=OBON + NB = OB

    ccosθ+ABsinθ=d\Rightarrow c\cos\theta + AB\sin\theta = d

    ccosθ+2tsinθcosθ=d\Rightarrow c\cos\theta + 2t\sin\theta\cos\theta = d

    ccosθ+tsin2θ=d\Rightarrow c\cos\theta + t\sin2\theta = d

  11. Since ADAD is the median BD=DC=a2\therefore BD = DC = \frac{a}{2}

    Also, DAE=CAE=A3\because \angle DAE = \angle CAE = \frac{A}{3}

    AEAE is common and AED=angleAEC=90\angle AED = angle AEC = 90^\circ

    AD=AC=b\therefore AD = AC = b

    Applying cosine rule in ABD,\triangle ABD,

    cosA3=AB2+AD2BD22.AB.AD\cos\frac{A}{3} = \frac{AB^2 + AD^2 - BD^2}{2.AB.AD}

    =c2+b2a242.c.b=4b2+4c2a28bc= \frac{c^2 + b^2 - \frac{a^2}{4}}{2.c.b} = \frac{4b^2 + 4c^2 - a^2}{8bc}

    Applying cosine rule in ABC,\triangle ABC,

    cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}

    4cos3A33cosA3=b2+c2a22bc4\cos^3\frac{A}{3} - 3\cos\frac{A}{3} = \frac{b^2 + c^2 - a^2}{2bc}

    4cos3A34cosA3=b2+c2a22bc4b2+4c2a28bc\Rightarrow 4\cos^3\frac{A}{3} - 4\cos\frac{A}{3} = \frac{b^2 + c^2 - a^2}{2bc} - \frac{4b^2 + 4c^2 - a^2}{8bc}

    4cosA3(1cos2A3)=4b2+4c2a28bcb2+c2a22bc\Rightarrow 4\cos\frac{A}{3}\left(1 - \cos^2\frac{A}{3}\right) = \frac{4b^2 + 4c^2 - a^2}{8bc} - \frac{b^2 + c^2 - a^2}{2bc}

    cosA3.sin2A3=3a232bc\Rightarrow \cos\frac{A}{3}.\sin^2\frac{A}{3} = \frac{3a^2}{32bc}

  12. Given, cosA+cosB+cosC=32\cos A + \cos B + \cos C = \frac{3}{2}

    b2+c2a22bc+c2+a2b22ca+a2+b2c22ab=32\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 + a^2 - b^2}{2ca} + \frac{a^2 + b^2 - c^2}{2ab} = \frac{3}{2}

    a(b2+c2a2)+b(c2+a2b2)+c(a2+b2c2)=3abc\Rightarrow a(b^2 + c^2 - a^2) + b(c^2 + a^2 - b^2) + c(a^2 + b^2 - c^2) = 3abc

    a(bc)2+b(ca)2+c(ab)2=a3+b3+c33abc=12[(ab)2+(bc)2+(ca)2](a+b+c)\Rightarrow a(b - c)^2 + b(c - a)^2 + c(a - b)^2 = a^3 + b^3 + c^3 - 3abc = \frac{1}{2}[(a - b)^2 + (b - c)^2 + (c - a)^2](a + b + c)

    b+ca2(bc)2+c+ab2(ca)2+a+bc2(ab)2=0\Rightarrow \frac{b + c - a}{2}(b - c)^2 + \frac{c + a - b}{2}(c - a)^2 + \frac{a + b - c}{2}(a - b)^2 = 0

    (ab)2=(bc)2=(ca)2=0\Rightarrow (a - b)^2 = (b - c)^2 = (c - a)^2 = 0

    a=b=c\Rightarrow a = b = c

  13. If the ABC\triangle ABC is equilateral A=B=C=60\Rightarrow A = B = C = 60^\circ

    tanA+tanB+tanC=33\Rightarrow \tan A + \tan B + \tan C = 3\sqrt{3}

    If tanA+tanB+tanC=33\tan A + \tan B + \tan C = 3\sqrt{3}

    then tanAtanBtanC=33\tan A\tan B\tan C = 3\sqrt{3}

    Thus, A.M. of tanA,tanB,tanC=\tan A, \tan B, \tan C = G.M. of tanA,tanB,tanC\tan A, \tan B, \tan C

    tanA=tanB=tanC\Rightarrow \tan A = \tan B = \tan C

  14. L.H.S. =(a+b+c)tanC2=2R(sinA+sinB+sinC)sinC2cosC2= (a + b + c)\tan\frac{C}{2} = 2R(\sin A + \sin B + \sin C)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2sinA+B2cosAB2+2sinC2cosC2)sinC2cosC2= 2R\left(2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}\right)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2cosC2cosAB2+2sinC2cosC2)sinC2cosC2= 2R\left(2\cos\frac{C}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}\right)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2sinC2cosAB2+2sin2C2)= 2R\left(2\sin\frac{C}{2}\cos\frac{A - B}{2} + 2\sin^2\frac{C}{2}\right)

    =2R(2cosA+B2cosAB2+2sin2C2)= 2R\left(2\cos\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin^2\frac{C}{2}\right)

    =2R(cosA+cosB+2sin2C2)= 2R\left(\cos A + \cos B + 2\sin^2\frac{C}{2}\right)

    R.H.S =acotA2+bcotB2ccotC2= a\cot\frac{A}{2} + b\cot\frac{B}{2} - c\cot\frac{C}{2}

    =2R(sinAcotA2=sinBcotB2sinCcotC2)= 2R\left(\sin A\cot\frac{A}{2} = \sin B\cot\frac{B}{2} - \sin C\cot\frac{C}{2}\right)

    =2R(2cos2A2+2cos2B22cos2C2)= 2R\left(2\cos^2\frac{A}{2} + 2\cos^2\frac{B}{2} - 2\cos^2\frac{C}{2}\right)

    =2R(2cos2A2+2cos2B22+2sin2C2)= 2R\left(2\cos^2\frac{A}{2} + 2\cos^2\frac{B}{2} - 2 + 2\sin^2\frac{C}{2}\right)

    =2R(cosA+cosB+2sin2C2)= 2R\left(\cos A + \cos B + 2\sin^2\frac{C}{2}\right)

    Thus, L.H.S. = R.H.S.

  15. sin2θ=1cos2θ2sin4θ=(1cos2θ)24\sin^2\theta = \frac{1 - \cos2\theta}{2} \Rightarrow \sin^4\theta = \frac{(1 - \cos2\theta)^2}{4}

    Also, for a triangle cos2A+cos2B+cos2C=14cosAcosBcosC\cos 2A + \cos 2B + \cos 2C = -1 -4\cos A\cos B\cos C

    and cos22A+cos2B+cos2C=1+2cos2Acos2Bcos2C\cos^22A + \cos^2B + \cos^2C = 1 + 2\cos 2A\cos 2B\cos 2C

    L.H.S. =(1cos2A)24+(1cos2B)24+(1cos2C)24= \frac{(1 - \cos2A)^2}{4} + \frac{(1 - \cos2B)^2}{4} + \frac{(1 - \cos 2C)^2}{4}

    =14[32(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]= \frac{1}{4}[3 - 2(\cos2A +\cos 2B + \cos 2C) + \cos^22A + \cos^22B + \cos^22C]

    =14[32(14cosAcosBcosC)+1+2cos2Acos2Bcos2C]= \frac{1}{4}[3 - 2(-1 - 4\cos A\cos B\cos C) + 1 + 2\cos 2A\cos 2B\cos 2C]

    =32+2cosAcosBcosC+12cos2Acos2Bcos2C== \frac{3}{2} + 2\cos A\cos B\cos C + \frac{1}{2}\cos 2A\cos 2B\cos 2C = R.H.S.

  16. Observe the relations in previous problem.

    L.H.S. =(1+cos2A)24+(1+cos2B)24+(1+cos2C)24= \frac{(1 + \cos2A)^2}{4} + \frac{(1 + \cos2B)^2}{4} + \frac{(1 + \cos2C)^2}{4}

    =14[3+2(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]= \frac{1}{4}[3 + 2(\cos2A +\cos 2B + \cos 2C) + \cos^22A + \cos^22B + \cos^22C]

    =14[3+2(14cosAcosBcosC)+1+2cos2Acos2Bcos2C]= \frac{1}{4}[3 + 2(-1 - 4\cos A\cos B\cos C) + 1 + 2\cos 2A\cos 2B\cos 2C]

    =122cosAcosBcosC+12cos2Acos2Bcos2C== \frac{1}{2} - 2\cos A\cos B\cos C + \frac{1}{2}\cos2A\cos2B\cos2C = R.H.S.

  17. L.H.S. =cotB+cosCcosAsinB=cosBcosA+cos[π(A+B)]cosAsinB= \cot B + \frac{\cos C}{\cos A\sin B} = \frac{\cos B\cos A + \cos[\pi - (A + B)]}{\cos A\sin B}

    =cosBcosAcos(A+B)cosAsinB=sinAsinBcosAsinB= \frac{\cos B\cos A - \cos(A + B)}{\cos A\sin B} = \frac{\sin A\sin B}{\cos A\sin B}

    =tanA= \tan A

    R.H.S. =cotC+cosBcosAsinC=cosCcosA+cos[π(A+C)]cosAsinC= \cot C + \frac{\cos B}{\cos A\sin C} = \frac{\cos C\cos A + \cos[\pi - (A + C)]}{\cos A\sin C}

    =sinAsinCcosAsinC=tanA= \frac{\sin A\sin C}{\cos A\sin C} = \tan A

    Thus, L.H.S. = R.H.S.

  18. asin(BC)b2c2=12R.sinAsin(BC)sin2Bsin2C\frac{a\sin(B - C)}{b^2 - c^2} = \frac{1}{2R}.\frac{\sin A\sin(B - C)}{\sin^2B - \sin^2C}

    =12R.sin[π(B+C)]sin(BC)sin(B+C)sin(BC)= \frac{1}{2R}.\frac{\sin[\pi - (B + C)]\sin(B - C)}{\sin(B + C)\sin(B - C)}

    =12R[sin{π(B+C)=sin(B+C)}]= \frac{1}{2R}[\because \sin\{\pi - (B + C) = \sin(B + C)\}]

    Similarly, bsin(CA)c2a2=csin(AB)a2b2=12R\frac{b\sin(C - A)}{c^2 - a^2} = \frac{c\sin(A - B)}{a^2 - b^2} = \frac{1}{2R}

  19. R.H.S. =bcacosA2=sinBsinCsinAcosA2= \frac{b - c}{a}\cos\frac{A}{2} = \frac{\sin B - \sin C}{\sin A}\cos\frac{A}{2}

    =2cosB+C2sinBC22sinA2cosA2cosA2= \frac{2\cos\frac{B + C}{2}\sin\frac{B - C}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}}\cos\frac{A}{2}

    =sinA2sinBC2sinA2= \frac{\sin\frac{A}{2}\sin\frac{B - C}{2}}{\sin\frac{A}{2}}

    =sinBC2== \sin\frac{B - C}{2} = L.H.S.

  20. L.H.S. =sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=3sinAsinBsinC= \sin^3A\cos(B - C) + \sin^3B\cos(C - A) + \sin^3C\cos(A - B) = 3\sin A\sin B\sin C

    =sin2Asin(B+C)cos(BC)+sin2Bsin(C+A)cos(CA)+sin2Csin(A+B)cos(AB)= \sin^2A\sin(B + C)\cos(B - C) + \sin^2B\sin(C + A)\cos(C - A) + \sin^2C\sin(A + B)\cos(A - B)

    =12[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)+sin2C(sin2A+sin2B)]= \frac{1}{2}[\sin^2A(\sin 2B + \sin 2C) + \sin^2B(\sin 2C + \sin 2A) + \sin^2C(\sin2A + \sin 2B)]

    =sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)= \sin^2A(\sin B\cos B + \sin C\cos C) + \sin^2B(\sin C\cos C + \sin A\cos A) + \sin^2C(\sin A\cos A + \sin B\cos B)

    =sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinAsinC(sinAcosC+cosAsinC)= \sin A\sin B(\sin A\cos B + \cos A\sin B) + \sin B\sin C(\sin B\cos C + \cos B\sin C) + \sin A\sin C(\sin A\cos C + \cos A\sin C)

    =sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinAsinCsin(A+C)= \sin A\sin B\sin(A + B) + \sin B\sin C\sin(B + C) + \sin A\sin C\sin(A + C)

    =3sinAsinBsinC== 3\sin A\sin B\sin C = R.H.S.

  21. L.H.S. =sin3A+sin3B+sin3C=34[sinA+sinB+sinC]13[sin3A+sin3B+sin3C]= \sin^3A + \sin^3B + \sin^3C = \frac{3}{4}[\sin A + \sin B + \sin C] - \frac{1}{3}[\sin 3A + \sin 3B + \sin 3C]

    sinA+sinB+sinC=2sinA+B2cosAB2+2sinC2cosC2\sin A + \sin B + \sin C = 2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin \frac{C}{2}\cos \frac{C}{2}

    =2cosC2[cosAB2+cosAB2]= 2\cos\frac{C}{2}\left[\cos\frac{A - B}{2} + \cos\frac{A - B}{2}\right]

    =4cosA2cosB2cosC2= 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

    Similarly, sin3A+sin3B+sin3C=4cos3A2cos3B2cos3C2\sin3A + \sin3B + \sin3C = 4\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}

  22. sin3Asin3(BC)=sin3A3sin(BC)sin3(BC)4\sin3A\sin^3(B - C) = \sin3A\frac{3\sin(B - C) - \sin3(B - C)}{4}

    Now sin3Asin3(BC)=sin3(B+C)sin3(BC)=sin23Bsin23C\sin 3A\sin3(B - C) = \sin3(B + C)\sin3(B - C) = \sin^23B - \sin^23C

    and sin3Asin(BC)=(3sinA4sin3A)sin(BC)\sin 3A\sin(B - C) = (3\sin A - 4\sin^3A)\sin(B - C)

    =3sin(B+C)sin(BC)4sin2Asin(B+C)sin(BC)= 3\sin(B + C)\sin(B - C) - 4\sin^2A\sin(B + C)\sin(B - C)

    =3[sin2Bsin2C]4sin2A(sin2Bsin2C)= 3[\sin^2B - \sin^2C] - 4\sin^2A(\sin^2B - \sin^2C)

    Thus, sin3Asin3(BC)+sin3Bsin3(CA)+sin3Csin3(AB)=0\sin3A\sin^3(B - C) + \sin3B\sin^3(C - A) + \sin3C\sin^3(A - B) = 0

  23. sin3Acos3(BC)=sin3A.3cos(BC)+cos3(BC4\sin3A\cos^3(B - C) = \sin3A.\frac{3\cos(B - C) + \cos3(B - C}{4}

    Now, 14sin3Acos3(BC)=182sin3(B+C)cos3(BC)=18(sin6B+sin6C)\frac{1}{4}\sin3A \cos3(B - C) = \frac{1}{8}2\sin3(B + C)\cos3(B - C) = \frac{1}{8}(\sin 6B + \sin 6C)

    So sin3Acos3(BC)=14(sin6A+sin6B+sin6C)\sum \sin3A \cos3(B - C) = \frac{1}{4}(\sin 6A + \sin 6B + \sin 6C)

    Again, 34sin3A.cos(BC)=34(3sinA4sin3A)cos(BC)\frac{3}{4}\sin3A.\cos(B - C) = \frac{3}{4}(3\sin A - 4\sin^3A)\cos(B - C)

    =98[(sin2B+sin2C)3sin3Acos(BC)= \frac{9}{8}[(\sin 2B + \sin 2C) -3\sin^3A\cos(B - C)

    We have just proved that sin3Acos(BC)=3sinAsinBsinC\sum \sin^3A\cos(B - C) = 3\sin A\sin B\sin C

    98(sin2B+sin2C)=94(sin2A+sin2B+sin2C)\therefore \frac{9}{8}\sum(\sin2B + \sin 2C) = \frac{9}{4}(\sin 2A + \sin 2B + \sin 2C)

    and 3sin3Acos(BC)=9sinAsinBsinC3\sum\sin^3A\cos(B - C) = 9\sin A\sin B\sin C

    Now, sin2A+sin2B+sin2C=4sinAsinBsinC\sin2A + \sin2B + \sin2C = 4\sin A\sin B\sin C

    and sin6A+sin6B+sin6C=4sin3Asin3Bsin3C\sin6A + \sin 6B + \sin6C = 4\sin3A\sin3B\sin3C

    Thus, the sum would be sin3Asin3Bsin3C\sin 3A\sin3B\sin3C

  24. L.H.S. =(s(sa)+s(sb)Δ)(a.(sa)(sc)ac+b(sb)(sc)bc)= \left(\frac{s(s - a) + s(s - b)}{\Delta}\right)\left(\frac{a.(s - a)(s - c)}{ac} + \frac{b(s - b)(s - c)}{bc}\right)

    =s(2sab)Δ((sc)(2sab)c)= \frac{s(2s - a - b)}{\Delta}\left(\frac{(s - c)(2s - a - b)}{c}\right)

    =ccotC2== c\cot\frac{C}{2} = R.H.S.

  25. Given a,b,ca,b,c are in A.P. 2b=a+c\therefore 2b = a + c

    2sinB=sinA+sinC4sinB2cosB2=2sinA+C2cosAC22\sin B = \sin A + \sin C \Rightarrow 4\sin\frac{B}{2}\cos\frac{B}{2} = 2\sin\frac{A + C}{2}\cos\frac{A - C}{2}

    2cosA+C2=cosAC2\Rightarrow 2\cos\frac{A + C}{2} = \cos\frac{A - C}{2}

    L.H.S. =4(1cosA)(1cosC)=4.2sin2A2.2sin2C2= 4(1 - \cos A)(1 - \cos C) = 4.2\sin^2\frac{A}{2}.2\sin^2\frac{C}{2}

    4(2sinA2sinC2)2=4(cosAC2cosA+C2)24\left(2\sin\frac{A}{2}\sin\frac{C}{2}\right)^2 = 4\left(\cos\frac{A - C}{2} - \cos\frac{A + C}{2}\right)^2

    =4(2cosA+C2cosA+C2)2=4cos2A+C2= 4\left(2\cos\frac{A + C}{2} - \cos\frac{A + C}{2}\right)^2 = 4\cos^2\frac{A + C}{2}

    R.H.S. =cosA+cosC=2cosA+C2cosAC2=4cos2A+C2= \cos A + \cos C = 2\cos\frac{A + C}{2}\cos\frac{A - C}{2} = 4\cos^2\frac{A + C}{2}

    Thus, L.H.S. = R.H.S.

  26. Given, a,b,ca, b, c are in H.P.

    1a.1b,1c\Rightarrow \frac{1}{a}. \frac{1}{b}, \frac{1}{c} are in A.P.

    sa,sb,sc\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c} are in A.P.

    sa1,sb1,sc1\Rightarrow \frac{s}{a} -1, \frac{s}{b} - 1, \frac{s}{c} - 1 are in A.P.

    bc(sb)(sc),ca(sc)(sa),ab(sa)(sc)\Rightarrow \frac{bc}{(s - b)(s - c), \frac{ca}{(s - c)(s - a)}}, \frac{ab}{(s - a)(s - c)} are in A.P.

    1sin2A2,1sin2B2,1sin2C2\Rightarrow \frac{1}{\sin^2\frac{A}{2}}, \frac{1}{\sin^2\frac{B}{2}}, \frac{1}{\sin^2\frac{C}{2}} are in A.P.

    sin2A2,sin2B2,sin2C2\Rightarrow \sin^2\frac{A}{2}, \sin^2\frac{B}{2}, \sin^2\frac{C}{2} are in H.P.

  27. We have to prove that cosAcotA2,cosBcotB2,cotCcotC2\cos A\cot\frac{A}{2}, \cos B\cot\frac{B}{2}, \cot C\cot\frac{C}{2} are in A.P.

    (12sin2A2)cotA2(12sin2B2)cotB2,(12sin2C2)cotC2\Rightarrow \left(1 - 2\sin^2\frac{A}{2}\right)\cot\frac{A}{2} \left(1 - 2\sin^2\frac{B}{2}\right)\cot\frac{B}{2}, \left(1 - 2\sin^2\frac{C}{2}\right)\cot\frac{C}{2} are in A.P.

    cotA2sinA,cotB2sinB,cotC2sinC\Rightarrow \cot\frac{A}{2} - \sin A, \cot\frac{B}{2} - \sin B, \cot\frac{C}{2} - \sin C are in A.P.

    Thus if we prove that cotA2,cotB2,cotC2\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2} and sinA,sinB,sinC\sin A, \sin B, \sin C are in A.P. separately then we would have prove the above in A.P.

    Now, cotA2+cotC2=s(sa)Δ+s(sc)Δ=sΔ[2sac]\cot \frac{A}{2} + \cot \frac{C}{2} = \frac{s(s - a)}{\Delta} + \frac{s(s - c)}{\Delta} = \frac{s}{\Delta}[2s - a - c]