20. Properties of Triangles’ Solutions Part 3#

  1. The diagram is given below:

    Problem 101

    Let BD=DE=EC=x.BD = DE = EC = x. Also let,

    BAD=α,DAE=β,EAC=γ,CEA=θ\angle BAD = \alpha, \angle DAE = \beta, EAC = \gamma, CEA = \theta

    Given, tanα=t1,tanβ=t2,tanγ=t3\tan\alpha = t_1, \tan\beta = t_2, \tan\gamma = t_3

    Applying m:nm:n rule in ABC,\triangle ABC, we get

    (2x+x)cotθ=2xcot(α+β)xcotγ(2x + x)\cot\theta = 2x\cot(\alpha + \beta) - x\cot\gamma

    From ADC,\triangle ADC, we get

    2xcotθ=xcotβxcotγ2x\cot\theta = x\cot\beta - x\cot\gamma

    32=2(α+β)cotγcotβcotγ\Rightarrow \frac{3}{2} = \frac{2(\alpha + \beta) - \cot\gamma}{\cot\beta - \cot\gamma}

    3cotβ3cotγ=4cot(α+β)2cotγ\Rightarrow 3\cot\beta - 3\cot\gamma = 4\cot(\alpha + \beta) - 2\cot\gamma

    3cotβcotγ=4(cotαcotβ1)cotα+cotβ3\cot\beta - \cot\gamma = \frac{4(\cot\alpha\cot\beta - 1)}{\cot\alpha + \cot\beta}

    3cot2βcotβcotγ+3cotαcotβcotαcotγ=4cotαcotβ43\cot^2\beta - \cot\beta\cot\gamma + 3\cot\alpha\cot\beta - \cot\alpha\cot\gamma = 4\cot\alpha\cot\beta - 4

    4+4cot2β=cot2β+cotαcotβ+cotβcotγ+cotαcotγ4 + 4\cot^2\beta = \cot^2\beta + \cot\alpha\cot\beta + \cot\beta\cot\gamma + \cot\alpha\cot\gamma

    4(1+cot2β)=(cotβ+cotα)(cotβ+cotγ)4(1 + \cot^2\beta) = (\cot\beta + \cot\alpha)(\cot\beta + \cot\gamma)

    4(1+1t22)=(1t1+1t2)(1t2+1t3)4\left(1 + \frac{1}{t_2^2}\right) = \left(\frac{1}{t_1} + \frac{1}{t_2}\right)\left(\frac{1}{t_2} + \frac{1}{t_3}\right)

  2. The diagram is given below:

    Problem 102

    Let the medians be AD,BEAD, BE and CFCF meet at O.O. From question,

    BOC=α,COA=β,AOB=γ\angle BOC=\alpha, \angle COA = \beta, \angle AOB = \gamma

    Let AD=p1,BE=p2,CF=p3AD = p_1, BE=p_2, CF = p_3

    AO:OD=2:1AO=23p1AO:OD = 2:1 \Rightarrow AO = \frac{2}{3}p_1

    Similalrly, OB=23p2,OC=23p3OB = \frac{2}{3}p_2, OC = \frac{2}{3}p_3

    Applying cosine rule in AOC,\triangle AOC,

    cosβ=OA2+OC2AC22.OA.OC=49p12+49p32b22.23p123p3\cos\beta = \frac{OA^2 + OC^2 - AC^2}{2.OA.OC} = \frac{\frac{4}{9}p_1^2 + \frac{4}{9}p_3^2 - b^2}{2.\frac{2}{3}p_1\frac{2}{3}p_3}

    cosβ=4p12+4p329b28p1p3\cos\beta = \frac{4p_1^2 + 4p_3^2 - 9b^2}{8p_1p_3}

    ΔAOC=12.OA.OC.sinβ\Delta AOC = \frac{1}{2}.OA.OC.\sin\beta

    13Δ=1223p123p3sinβ\frac{1}{3}\Delta = \frac{1}{2}\frac{2}{3}p_1\frac{2}{3}p_3\sin\beta where Δ\Delta is area of triangle ABC.ABC.

    sinβ=3Δ2p1p3\sin\beta = \frac{3\Delta}{2p_1p_3}

    cosβ=4p12+4p329b212Δ\Rightarrow \cos\beta = \frac{4p_1^2 + 4p_3^2 - 9b^2}{12\Delta}

    AD\because AD is mean of ABC\triangle ABC

    AB2+AC2=2BD2+2AD2\therefore AB^2 + AC^2 = 2BD^2 + 2AD^2

    b2+c2=2a24+2p12\Rightarrow b^2 + c^2 = 2\frac{a^2}{4} + 2p_1^2

    p12=2b2+2c2a24p_1^2 = \frac{2b^2 + 2c^2 - a^2}{4}

    Similarly, p22=2c2+2a2b24p_2^2 = \frac{2c^2 + 2a^2 - b^2}{4}

    and p32=2a2+2b2c24p_3^2 = \frac{2a^2 + 2b^2 - c^2}{4}

    cosβ=(2b2+2c2a2)+(2a2+2b2c2)9b212Δ\Rightarrow \cos\beta = \frac{(2b^2 + 2c^2 - a^2) + (2a^2 + 2b^2 - c^2) - 9b^2}{12\Delta}

    =a2+c25b212Δ= \frac{a^2 + c^2 - 5b^2}{12\Delta}

    Similarly, cosα=b2+c25a212Δ\cos\alpha = \frac{b^2 + c^2 - 5a^2}{12\Delta}

    Similarly, cosγ=a2+b25c212Δ\cos\gamma = \frac{a^2 + b^2 - 5c^2}{12\Delta}

    cosα+cosβ+cosγ=3(a2+b2+c2)12Δ\cos\alpha + \cos\beta + \cos\gamma = \frac{-3(a^2 + b^2 + c^2)}{12\Delta}

    =a2+b2+c24Δ= -\frac{a^2 + b^2 + c^2}{4\Delta}

    cotA+cotB+cotC=b2+c2a22bcsinA+c2+a2b22casinB+a2+b2c22absinC\cot A + \cot B + \cot C = \frac{b^2 + c^2 - a^2}{2bc\sin A} + \frac{c^2 + a^2 - b^2}{2ca\sin B} + \frac{a^2 + b^2 - c^2}{2ab\sin C}

    =a2+b2+c24Δ= \frac{a^2 + b^2 + c^2}{4\Delta}

    cotα+cotβ+cotγ+cotA+cotB+cotC=0\Rightarrow \cot\alpha + \cot\beta + \cot\gamma + \cot A + \cot B + \cot C = 0

  3. The diagram is given below:

    Problem 103

    Let ADAD be the perpendicular from AA on BC.BC. When ADAD is extended it meets the circumscrbing circle at E.E. Given, DE=α.DE=\alpha.

    Since angles in the same segment are equal, AEB=ACB=C\therefore \angle AEB = \angle ACB = \angle C

    and AEC=ABC=B\angle AEC = \angle ABC = \angle B

    From right angled BDE,tanC=BDDE\triangle BDE, \tan C = \frac{BD}{DE}

    From right angled CDE,tanB=CDDE\triangle CDE, \tan B = \frac{CD}{DE}

    tanB+tanC=aα\tan B + \tan C = \frac{a}{\alpha}

    Similarly, tanC+tanA=bβ\tan C + \tan A = \frac{b}{\beta}

    and tanA+tanB=cγ\tan A + \tan B = \frac{c}{\gamma}

    Adding, we get

    aα+bβ+cγ=2(tanA+tanB+tanC)\frac{a}{\alpha} + \frac{b}{\beta} + \frac{c}{\gamma} = 2(\tan A + \tan B + \tan C)

  4. The diagram is given below:

    Problem 104

    Let HH be the orthocenter of triangle ABC.ABC.

    From question, HA=p,HB=q,HC=r.HA = p, HB = q, HC = r.

    From figure, HBD=EBC=90C\angle HBD = \angle EBC = 90^\circ - C

    HCD=FCB=90B\angle HCD = \angle FCB = 90^\circ - B

    BHC=180(HBD+HCD)\therefore \angle BHC = 180^\circ - (\angle HBD + \angle HCD)

    =180[90C+90B]=B+C=πA= 180^\circ - [90^\circ - C + 90^\circ - B] = B + C = \pi - A

    Similarly, AHC=πB\angle AHC = \pi - B and AHB=πC\angle AHB = \pi - C

    Now ΔBHC+ΔCHA+ΔAHB=ΔABC\Delta BHC + \Delta CHA + \Delta AHB = \Delta ABC

    12[qrsinBHC+rpsinCHA+pqsinAHB]=Δ\Rightarrow \frac{1}{2}[qr\sin BHC + rp\sin CHA + pq \sin AHB] = \Delta

    12[qrsinA+rpsinB+pqsinC]=Δ\Rightarrow \frac{1}{2}[qr\sin A + rp\sin B + pq\sin C] = \Delta

    aqr+brp+cpq=abc\Rightarrow aqr + brp + cpq = abc

  5. The diagram is given below:

    Problem 105

    Let OO be the center of unit circle and AA be the center of circle whose arc BPCBPC divides the unit circle in two equal parts.

    i.e area of the curve ABPCA=12ABPCA = \frac{1}{2} area of the unit circle =π2= \frac{\pi}{2}

    Let the radius of this new circle be r.r.

    Then, AC=AB=AP=rAC = AB = AP = r

    OB=OC=1OCA=OAC=θ\because OB = OC = 1 \therefore \angle OCA = \angle OAC = \theta

    Applying sine rule in AOC,\triangle AOC,

    rsin(π2θ)=1sinθ\frac{r}{\sin(\pi -2\theta)} = \frac{1}{\sin\theta}

    r=2cosθr = 2\cos\theta

    Now area of ABPCA=2[ABPCA = 2[ Are of sector ACP+ACP + Area of sector OACOAC - Are of OAC]\triangle OAC]

    =2[12r2θ+1212(π2θ)12sin(π2θ)]= 2\left[\frac{1}{2}r^2\theta + \frac{1}{2}1^2(\pi - 2\theta) - \frac{1}{2}\sin(\pi -2\theta)\right]

    =θ.4cos2θ+π2θsin2θ[r=2cosθ]=\theta. 4\cos^2\theta + \pi - 2\theta - \sin2\theta [\because r = 2\cos\theta]

    =2θcos2θsin2θ+π= 2\theta\cos2\theta - \sin2\theta + \pi

    π2=2θcos2θsin2θ+π\Rightarrow \frac{\pi}{2} = 2\theta\cos2\theta - \sin2\theta + \pi

    π2=sin2θ2θcos2θ\Rightarrow \frac{\pi}{2} = \sin2\theta - 2\theta\cos2\theta

  6. The diagram is given below:

    Problem 106

    Let EFEF be the perpendicular bisector of BCBC and OO the center of the square. From question,

    Let BF=FC=aBC=EF=2aBF = FC = a \Rightarrow BC = EF = 2a and OE=OF=aOE=OF = a

    Let OP=xOQ=xOP = x \Rightarrow OQ = x

    PF=ax,QF=a+x\Rightarrow PF = a - x, QF = a + x

    From right angled BPF,\triangle BPF,

    tanB=PFBF=axx\tan B = \frac{PF}{BF} = \frac{a - x}{x}

    From right angled QFC,\triangle QFC,

    tanC=a+xa\tan C = \frac{a + x}{a}

    (tanBtanC)2=4x2a2\Rightarrow (\tan B - \tan C)^2 = \frac{4x^2}{a^2}

    In triangle ABC,ABC,

    tanA=tan[π(B+C)]=tan(B+C)=2a2x2\tan A = \tan[\pi - (B + C)] = -\tan(B + C) = -\frac{2a^2}{x^2}

    tanA(tanBtanC)2+8=0\Rightarrow \tan A(\tan B - \tan C)^2 + 8 = 0

  7. The diagram is given below:

    Problem 107

    CD\because CD is internal bisector of C\angle C

    ADDB=ba\therefore \frac{AD}{DB} = \frac{b}{a}

    BD=aca+b\Rightarrow BD = \frac{ac}{a + b}

    Since angles of the same segment are equal.

    ABE=ACE=C2\therefore \angle ABE = \angle ACE = \frac{C}{2}

    and BEC=BAC=A\angle BEC = \angle BAC = A

    Applying sine rule in BEC,\triangle BEC,

    CEsinCBE=BCsinBECCE=asin(a+C2)sinA\frac{CE}{\sin CBE} = \frac{BC}{\sin BEC} \Rightarrow CE = \frac{a\sin\left(a + \frac{C}{2}\right)}{\sin A}

    Applying sine rule in BDE,\triangle BDE,

    DEsinC2=BDsinADE=acsinC2(a+b)sinA\frac{DE}{\sin\frac{C}{2}} = \frac{BD}{\sin A}\Rightarrow DE = \frac{ac\sin\frac{C}{2}}{(a + b)\sin A}

    CEDE=asin(B+C2)acsinC2(a+b)\Rightarrow \frac{CE}{DE} = \frac{a\sin\left(B + \frac{C}{2}\right)}{ac\sin\frac{C}{2}}(a + b)

    CEDE=(a+b)sin(B+C2)csinC2\Rightarrow \frac{CE}{DE} = \frac{(a + b)\sin\left(B + \frac{C}{2}\right)}{c\sin \frac{C}{2}}

    Now, sin(B+C2)sinC2=sin(B+C2).2cosC22sinC2cosC2\frac{\sin\left(B + \frac{C}{2}\right)}{\sin\frac{C}{2}} = \frac{\sin\left(B + \frac{C}{2}\right).2\cos\frac{C}{2}}{2\sin\frac{C}{2}\cos\frac{C}{2}}

    =sin(B+C)+sinBsinC=sinA+sinBsinC=a+bc= \frac{\sin(B + C)+ \sin B}{\sin C} = \frac{\sin A + \sin B}{\sin C} = \frac{a + b}{c}

    Thus, CEDE=(a+b)2c2\frac{CE}{DE} = \frac{(a + b)^2}{c^2}

  8. The diagram is given below:

    Problem 108

    AD\because AD is the interna; bisector of angle A,A,

    BDDC=BAAC=cb\frac{BD}{DC} = \frac{BA}{AC} = \frac{c}{b}

    BDc=DCb=BD+DCb+c\Rightarrow \frac{BD}{c} = \frac{DC}{b} = \frac{BD + DC}{b + c}

    BDc=ab+c\Rightarrow \frac{BD}{c} = \frac{a}{b + c}

    Similarly, BFa=ca+b\frac{BF}{a} = \frac{c}{a + b}

    Now ΔBDFΔABC=BD.BF.sinBa.c.sinB=ac(a+b)(b+c)\frac{\Delta BDF}{\Delta ABC} = \frac{BD.BF.\sin B}{a.c.\sin B} = \frac{ac}{(a + b)(b + c)}

    Similarly, ΔCDEΔABC=ab(a+c)(b+c)\frac{\Delta CDE}{\Delta ABC} = \frac{ab}{(a + c)(b + c)}

    and ΔAEFΔABC=bc(a+b)(a+c)\frac{\Delta AEF}{\Delta ABC} = \frac{bc}{(a + b)(a + c)}

    ΔDEFΔABC=ΔABC(ΔBDF+ΔCDE+ΔAEF)ΔABC\therefore \frac{\Delta DEF}{\Delta ABC} = \frac{\Delta ABC - (\Delta BDF + \Delta CDE + \Delta AEF)}{\Delta ABC}

    =1ac(a+b)(b+c)ab(a+c)(b+c)bc(a+b)(a+c)= 1 - \frac{ac}{(a + b)(b + c)} - \frac{ab}{(a + c)(b + c)} - \frac{bc}{(a + b)(a + c)}

    =2abc(a+b)(b+c)(c+a)= \frac{2abc}{(a + b)(b + c)(c + a)}

    ΔDEF=2.Δ.abc(a+b)(b+c)(c+a)\Delta DEF = \frac{2.\Delta .abc}{(a + b)(b + c)(c + a)}

  9. The diagram is given below:

    Problem 109

    A+B+C=π3α+3β+3γ=πα+β+γ=π3\because A + B + C = \pi \Rightarrow 3\alpha + 3\beta + 3\gamma = \pi \Rightarrow \alpha + \beta + \gamma = \frac{\pi}{3}

    Clearly, ADB=60\angle ADB = 60^\circ

    Applying sine rule in ADB,\triangle ADB,

    ARsinβ=csin[π(α+β)]\frac{AR}{\sin\beta} = \frac{c}{\sin[\pi - (\alpha + \beta)]}

    AR=csinβsin(α+β)=2RsinCsinβsin(α+β)AR = \frac{c\sin \beta}{\sin(\alpha + \beta)} = \frac{2R\sin C\sin\beta}{\sin(\alpha + \beta)}

    =2Rsin3γsinβsin(60γ)= \frac{2R\sin3\gamma\sin\beta}{\sin(60^\circ - \gamma)}

    =2R(3sinγ4sin3γ)sinβsin(60γ).cos(30γ)cos(30γ= \frac{2R(3\sin\gamma - 4\sin^3\gamma)\sin\beta}{\sin(60^\circ - \gamma)}.\frac{\cos(30^\circ - \gamma)}{cos(30^\circ - \gamma}

    =4Rsinβsinγ.(34sin2γ).cos(30γ)sin(092γ)+sin30= \frac{4R\sin\beta\sin\gamma.(3 - 4\sin^2\gamma).\cos(30^\circ - \gamma)}{\sin(09^\circ - 2\gamma) + \sin 30^\circ}

    =4Rsinβsinγcos(30γ)(34sin2γ)cos2γ+12= \frac{4R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{\cos2\gamma + \frac{1}{2}}

    =8Rsinβsinγcos(30γ)(34sin2γ)2cos2γ+1= \frac{8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{2\cos2\gamma + 1}

    =8Rsinβsinγcos(30γ)(34sin2γ)2(12sin2γ)+1= \frac{8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)(3 - 4\sin^2\gamma)}{2(1 - 2\sin^2\gamma) + 1}

    =8Rsinβsinγcos(30γ)= 8R\sin\beta\sin\gamma\cos(30^\circ - \gamma)

  10. The diagram is given below:

    Problem 110

    From figure, AOX=π2θ\angle AOX = \frac{\pi}{2} - \theta

    Since OXOX is tangent to the circle, OBOB will pass through the center PP of the circle and hence OBOB will be the diameter of the given circle.

    OAB=90OBA=90θ\Rightarrow \angle OAB = 90^\circ \Rightarrow \angle OBA = 90^\circ - \theta

    By property of circle, OAQ=OBA=90θOAQ = \angle OBA = 90^\circ - \theta

    Also, AOQ=90theta[OQ=OA]AOQ = 90^\circ - theta[\because OQ = OA]

    OQA=2θAQX=π2θ\therefore OQA = 2\theta \Rightarrow AQX = \pi - 2\theta

    BOX=π1\angle BOX = \frac{\pi}{1}

    Applying sine rule in ABT,weget\triangle ABT, we get

    ABsin(π2θ)=ATsinθ\frac{AB}{\sin(\pi - 2\theta)} = \frac{AT}{\sin\theta}

    ABsin2θ=tsinθAB=2tcosθ\frac{AB}{\sin2\theta} = \frac{t}{\sin\theta} \Rightarrow AB = 2t\cos\theta

    From right angled AOB,\triangle AOB,

    tanθ=ABOAAB=ctanθ\tan\theta = \frac{AB}{OA} \Rightarrow AB = c\tan\theta

    ctanθ=2tcosθ\Rightarrow c\tan\theta = 2t\cos\theta

    csinθt(1+cos2θ)=0\Rightarrow c\sin\theta - t(1 + \cos2\theta) = 0

    Let ANOBAN\perp OB

    Now, ON+NB=OBON + NB = OB

    ccosθ+ABsinθ=d\Rightarrow c\cos\theta + AB\sin\theta = d

    ccosθ+2tsinθcosθ=d\Rightarrow c\cos\theta + 2t\sin\theta\cos\theta = d

    ccosθ+tsin2θ=d\Rightarrow c\cos\theta + t\sin2\theta = d

  11. Since ADAD is the median BD=DC=a2\therefore BD = DC = \frac{a}{2}

    Also, DAE=CAE=A3\because \angle DAE = \angle CAE = \frac{A}{3}

    AEAE is common and AED=angleAEC=90\angle AED = angle AEC = 90^\circ

    AD=AC=b\therefore AD = AC = b

    Applying cosine rule in ABD,\triangle ABD,

    cosA3=AB2+AD2BD22.AB.AD\cos\frac{A}{3} = \frac{AB^2 + AD^2 - BD^2}{2.AB.AD}

    =c2+b2a242.c.b=4b2+4c2a28bc= \frac{c^2 + b^2 - \frac{a^2}{4}}{2.c.b} = \frac{4b^2 + 4c^2 - a^2}{8bc}

    Applying cosine rule in ABC,\triangle ABC,

    cosA=b2+c2a22bc\cos A = \frac{b^2 + c^2 - a^2}{2bc}

    4cos3A33cosA3=b2+c2a22bc4\cos^3\frac{A}{3} - 3\cos\frac{A}{3} = \frac{b^2 + c^2 - a^2}{2bc}

    4cos3A34cosA3=b2+c2a22bc4b2+4c2a28bc\Rightarrow 4\cos^3\frac{A}{3} - 4\cos\frac{A}{3} = \frac{b^2 + c^2 - a^2}{2bc} - \frac{4b^2 + 4c^2 - a^2}{8bc}

    4cosA3(1cos2A3)=4b2+4c2a28bcb2+c2a22bc\Rightarrow 4\cos\frac{A}{3}\left(1 - \cos^2\frac{A}{3}\right) = \frac{4b^2 + 4c^2 - a^2}{8bc} - \frac{b^2 + c^2 - a^2}{2bc}

    cosA3.sin2A3=3a232bc\Rightarrow \cos\frac{A}{3}.\sin^2\frac{A}{3} = \frac{3a^2}{32bc}

  12. Given, cosA+cosB+cosC=32\cos A + \cos B + \cos C = \frac{3}{2}

    b2+c2a22bc+c2+a2b22ca+a2+b2c22ab=32\Rightarrow \frac{b^2 + c^2 - a^2}{2bc} + \frac{c^2 + a^2 - b^2}{2ca} + \frac{a^2 + b^2 - c^2}{2ab} = \frac{3}{2}

    a(b2+c2a2)+b(c2+a2b2)+c(a2+b2c2)=3abc\Rightarrow a(b^2 + c^2 - a^2) + b(c^2 + a^2 - b^2) + c(a^2 + b^2 - c^2) = 3abc

    a(bc)2+b(ca)2+c(ab)2=a3+b3+c33abc=12[(ab)2+(bc)2+(ca)2](a+b+c)\Rightarrow a(b - c)^2 + b(c - a)^2 + c(a - b)^2 = a^3 + b^3 + c^3 - 3abc = \frac{1}{2}[(a - b)^2 + (b - c)^2 + (c - a)^2](a + b + c)

    b+ca2(bc)2+c+ab2(ca)2+a+bc2(ab)2=0\Rightarrow \frac{b + c - a}{2}(b - c)^2 + \frac{c + a - b}{2}(c - a)^2 + \frac{a + b - c}{2}(a - b)^2 = 0

    (ab)2=(bc)2=(ca)2=0\Rightarrow (a - b)^2 = (b - c)^2 = (c - a)^2 = 0

    a=b=c\Rightarrow a = b = c

  13. If the ABC\triangle ABC is equilateral A=B=C=60\Rightarrow A = B = C = 60^\circ

    tanA+tanB+tanC=33\Rightarrow \tan A + \tan B + \tan C = 3\sqrt{3}

    If tanA+tanB+tanC=33\tan A + \tan B + \tan C = 3\sqrt{3}

    then tanAtanBtanC=33\tan A\tan B\tan C = 3\sqrt{3}

    Thus, A.M. of tanA,tanB,tanC=\tan A, \tan B, \tan C = G.M. of tanA,tanB,tanC\tan A, \tan B, \tan C

    tanA=tanB=tanC\Rightarrow \tan A = \tan B = \tan C

  14. L.H.S. =(a+b+c)tanC2=2R(sinA+sinB+sinC)sinC2cosC2= (a + b + c)\tan\frac{C}{2} = 2R(\sin A + \sin B + \sin C)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2sinA+B2cosAB2+2sinC2cosC2)sinC2cosC2= 2R\left(2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}\right)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2cosC2cosAB2+2sinC2cosC2)sinC2cosC2= 2R\left(2\cos\frac{C}{2}\cos\frac{A - B}{2} + 2\sin\frac{C}{2}\cos\frac{C}{2}\right)\frac{\sin\frac{C}{2}}{\cos\frac{C}{2}}

    =2R(2sinC2cosAB2+2sin2C2)= 2R\left(2\sin\frac{C}{2}\cos\frac{A - B}{2} + 2\sin^2\frac{C}{2}\right)

    =2R(2cosA+B2cosAB2+2sin2C2)= 2R\left(2\cos\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin^2\frac{C}{2}\right)

    =2R(cosA+cosB+2sin2C2)= 2R\left(\cos A + \cos B + 2\sin^2\frac{C}{2}\right)

    R.H.S =acotA2+bcotB2ccotC2= a\cot\frac{A}{2} + b\cot\frac{B}{2} - c\cot\frac{C}{2}

    =2R(sinAcotA2=sinBcotB2sinCcotC2)= 2R\left(\sin A\cot\frac{A}{2} = \sin B\cot\frac{B}{2} - \sin C\cot\frac{C}{2}\right)

    =2R(2cos2A2+2cos2B22cos2C2)= 2R\left(2\cos^2\frac{A}{2} + 2\cos^2\frac{B}{2} - 2\cos^2\frac{C}{2}\right)

    =2R(2cos2A2+2cos2B22+2sin2C2)= 2R\left(2\cos^2\frac{A}{2} + 2\cos^2\frac{B}{2} - 2 + 2\sin^2\frac{C}{2}\right)

    =2R(cosA+cosB+2sin2C2)= 2R\left(\cos A + \cos B + 2\sin^2\frac{C}{2}\right)

    Thus, L.H.S. = R.H.S.

  15. sin2θ=1cos2θ2sin4θ=(1cos2θ)24\sin^2\theta = \frac{1 - \cos2\theta}{2} \Rightarrow \sin^4\theta = \frac{(1 - \cos2\theta)^2}{4}

    Also, for a triangle cos2A+cos2B+cos2C=14cosAcosBcosC\cos 2A + \cos 2B + \cos 2C = -1 -4\cos A\cos B\cos C

    and cos22A+cos2B+cos2C=1+2cos2Acos2Bcos2C\cos^22A + \cos^2B + \cos^2C = 1 + 2\cos 2A\cos 2B\cos 2C

    L.H.S. =(1cos2A)24+(1cos2B)24+(1cos2C)24= \frac{(1 - \cos2A)^2}{4} + \frac{(1 - \cos2B)^2}{4} + \frac{(1 - \cos 2C)^2}{4}

    =14[32(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]= \frac{1}{4}[3 - 2(\cos2A +\cos 2B + \cos 2C) + \cos^22A + \cos^22B + \cos^22C]

    =14[32(14cosAcosBcosC)+1+2cos2Acos2Bcos2C]= \frac{1}{4}[3 - 2(-1 - 4\cos A\cos B\cos C) + 1 + 2\cos 2A\cos 2B\cos 2C]

    =32+2cosAcosBcosC+12cos2Acos2Bcos2C== \frac{3}{2} + 2\cos A\cos B\cos C + \frac{1}{2}\cos 2A\cos 2B\cos 2C = R.H.S.

  16. Observe the relations in previous problem.

    L.H.S. =(1+cos2A)24+(1+cos2B)24+(1+cos2C)24= \frac{(1 + \cos2A)^2}{4} + \frac{(1 + \cos2B)^2}{4} + \frac{(1 + \cos2C)^2}{4}

    =14[3+2(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]= \frac{1}{4}[3 + 2(\cos2A +\cos 2B + \cos 2C) + \cos^22A + \cos^22B + \cos^22C]

    =14[3+2(14cosAcosBcosC)+1+2cos2Acos2Bcos2C]= \frac{1}{4}[3 + 2(-1 - 4\cos A\cos B\cos C) + 1 + 2\cos 2A\cos 2B\cos 2C]

    =122cosAcosBcosC+12cos2Acos2Bcos2C== \frac{1}{2} - 2\cos A\cos B\cos C + \frac{1}{2}\cos2A\cos2B\cos2C = R.H.S.

  17. L.H.S. =cotB+cosCcosAsinB=cosBcosA+cos[π(A+B)]cosAsinB= \cot B + \frac{\cos C}{\cos A\sin B} = \frac{\cos B\cos A + \cos[\pi - (A + B)]}{\cos A\sin B}

    =cosBcosAcos(A+B)cosAsinB=sinAsinBcosAsinB= \frac{\cos B\cos A - \cos(A + B)}{\cos A\sin B} = \frac{\sin A\sin B}{\cos A\sin B}

    =tanA= \tan A

    R.H.S. =cotC+cosBcosAsinC=cosCcosA+cos[π(A+C)]cosAsinC= \cot C + \frac{\cos B}{\cos A\sin C} = \frac{\cos C\cos A + \cos[\pi - (A + C)]}{\cos A\sin C}

    =sinAsinCcosAsinC=tanA= \frac{\sin A\sin C}{\cos A\sin C} = \tan A

    Thus, L.H.S. = R.H.S.

  18. asin(BC)b2c2=12R.sinAsin(BC)sin2Bsin2C\frac{a\sin(B - C)}{b^2 - c^2} = \frac{1}{2R}.\frac{\sin A\sin(B - C)}{\sin^2B - \sin^2C}

    =12R.sin[π(B+C)]sin(BC)sin(B+C)sin(BC)= \frac{1}{2R}.\frac{\sin[\pi - (B + C)]\sin(B - C)}{\sin(B + C)\sin(B - C)}

    =12R[sin{π(B+C)=sin(B+C)}]= \frac{1}{2R}[\because \sin\{\pi - (B + C) = \sin(B + C)\}]

    Similarly, bsin(CA)c2a2=csin(AB)a2b2=12R\frac{b\sin(C - A)}{c^2 - a^2} = \frac{c\sin(A - B)}{a^2 - b^2} = \frac{1}{2R}

  19. R.H.S. =bcacosA2=sinBsinCsinAcosA2= \frac{b - c}{a}\cos\frac{A}{2} = \frac{\sin B - \sin C}{\sin A}\cos\frac{A}{2}

    =2cosB+C2sinBC22sinA2cosA2cosA2= \frac{2\cos\frac{B + C}{2}\sin\frac{B - C}{2}}{2\sin\frac{A}{2}\cos\frac{A}{2}}\cos\frac{A}{2}

    =sinA2sinBC2sinA2= \frac{\sin\frac{A}{2}\sin\frac{B - C}{2}}{\sin\frac{A}{2}}

    =sinBC2== \sin\frac{B - C}{2} = L.H.S.

  20. L.H.S. =sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=3sinAsinBsinC= \sin^3A\cos(B - C) + \sin^3B\cos(C - A) + \sin^3C\cos(A - B) = 3\sin A\sin B\sin C

    =sin2Asin(B+C)cos(BC)+sin2Bsin(C+A)cos(CA)+sin2Csin(A+B)cos(AB)= \sin^2A\sin(B + C)\cos(B - C) + \sin^2B\sin(C + A)\cos(C - A) + \sin^2C\sin(A + B)\cos(A - B)

    =12[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)+sin2C(sin2A+sin2B)]= \frac{1}{2}[\sin^2A(\sin 2B + \sin 2C) + \sin^2B(\sin 2C + \sin 2A) + \sin^2C(\sin2A + \sin 2B)]

    =sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)= \sin^2A(\sin B\cos B + \sin C\cos C) + \sin^2B(\sin C\cos C + \sin A\cos A) + \sin^2C(\sin A\cos A + \sin B\cos B)

    =sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinAsinC(sinAcosC+cosAsinC)= \sin A\sin B(\sin A\cos B + \cos A\sin B) + \sin B\sin C(\sin B\cos C + \cos B\sin C) + \sin A\sin C(\sin A\cos C + \cos A\sin C)

    =sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinAsinCsin(A+C)= \sin A\sin B\sin(A + B) + \sin B\sin C\sin(B + C) + \sin A\sin C\sin(A + C)

    =3sinAsinBsinC== 3\sin A\sin B\sin C = R.H.S.

  21. L.H.S. =sin3A+sin3B+sin3C=34[sinA+sinB+sinC]13[sin3A+sin3B+sin3C]= \sin^3A + \sin^3B + \sin^3C = \frac{3}{4}[\sin A + \sin B + \sin C] - \frac{1}{3}[\sin 3A + \sin 3B + \sin 3C]

    sinA+sinB+sinC=2sinA+B2cosAB2+2sinC2cosC2\sin A + \sin B + \sin C = 2\sin\frac{A + B}{2}\cos\frac{A - B}{2} + 2\sin \frac{C}{2}\cos \frac{C}{2}

    =2cosC2[cosAB2+cosAB2]= 2\cos\frac{C}{2}\left[\cos\frac{A - B}{2} + \cos\frac{A - B}{2}\right]

    =4cosA2cosB2cosC2= 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

    Similarly, sin3A+sin3B+sin3C=4cos3A2cos3B2cos3C2\sin3A + \sin3B + \sin3C = 4\cos\frac{3A}{2}\cos\frac{3B}{2}\cos\frac{3C}{2}

  22. sin3Asin3(BC)=sin3A3sin(BC)sin3(BC)4\sin3A\sin^3(B - C) = \sin3A\frac{3\sin(B - C) - \sin3(B - C)}{4}

    Now sin3Asin3(BC)=sin3(B+C)sin3(BC)=sin23Bsin23C\sin 3A\sin3(B - C) = \sin3(B + C)\sin3(B - C) = \sin^23B - \sin^23C

    and sin3Asin(BC)=(3sinA4sin3A)sin(BC)\sin 3A\sin(B - C) = (3\sin A - 4\sin^3A)\sin(B - C)

    =3sin(B+C)sin(BC)4sin2Asin(B+C)sin(BC)= 3\sin(B + C)\sin(B - C) - 4\sin^2A\sin(B + C)\sin(B - C)

    =3[sin2Bsin2C]4sin2A(sin2Bsin2C)= 3[\sin^2B - \sin^2C] - 4\sin^2A(\sin^2B - \sin^2C)

    Thus, sin3Asin3(BC)+sin3Bsin3(CA)+sin3Csin3(AB)=0\sin3A\sin^3(B - C) + \sin3B\sin^3(C - A) + \sin3C\sin^3(A - B) = 0

  23. sin3Acos3(BC)=sin3A.3cos(BC)+cos3(BC4\sin3A\cos^3(B - C) = \sin3A.\frac{3\cos(B - C) + \cos3(B - C}{4}

    Now, 14sin3Acos3(BC)=182sin3(B+C)cos3(BC)=18(sin6B+sin6C)\frac{1}{4}\sin3A \cos3(B - C) = \frac{1}{8}2\sin3(B + C)\cos3(B - C) = \frac{1}{8}(\sin 6B + \sin 6C)

    So sin3Acos3(BC)=14(sin6A+sin6B+sin6C)\sum \sin3A \cos3(B - C) = \frac{1}{4}(\sin 6A + \sin 6B + \sin 6C)

    Again, 34sin3A.cos(BC)=34(3sinA4sin3A)cos(BC)\frac{3}{4}\sin3A.\cos(B - C) = \frac{3}{4}(3\sin A - 4\sin^3A)\cos(B - C)

    =98[(sin2B+sin2C)3sin3Acos(BC)= \frac{9}{8}[(\sin 2B + \sin 2C) -3\sin^3A\cos(B - C)

    We have just proved that sin3Acos(BC)=3sinAsinBsinC\sum \sin^3A\cos(B - C) = 3\sin A\sin B\sin C

    98(sin2B+sin2C)=94(sin2A+sin2B+sin2C)\therefore \frac{9}{8}\sum(\sin2B + \sin 2C) = \frac{9}{4}(\sin 2A + \sin 2B + \sin 2C)

    and 3sin3Acos(BC)=9sinAsinBsinC3\sum\sin^3A\cos(B - C) = 9\sin A\sin B\sin C

    Now, sin2A+sin2B+sin2C=4sinAsinBsinC\sin2A + \sin2B + \sin2C = 4\sin A\sin B\sin C

    and sin6A+sin6B+sin6C=4sin3Asin3Bsin3C\sin6A + \sin 6B + \sin6C = 4\sin3A\sin3B\sin3C

    Thus, the sum would be sin3Asin3Bsin3C\sin 3A\sin3B\sin3C

  24. L.H.S. =(s(sa)+s(sb)Δ)(a.(sa)(sc)ac+b(sb)(sc)bc)= \left(\frac{s(s - a) + s(s - b)}{\Delta}\right)\left(\frac{a.(s - a)(s - c)}{ac} + \frac{b(s - b)(s - c)}{bc}\right)

    =s(2sab)Δ((sc)(2sab)c)= \frac{s(2s - a - b)}{\Delta}\left(\frac{(s - c)(2s - a - b)}{c}\right)

    =ccotC2== c\cot\frac{C}{2} = R.H.S.

  25. Given a,b,ca,b,c are in A.P. 2b=a+c\therefore 2b = a + c

    2sinB=sinA+sinC4sinB2cosB2=2sinA+C2cosAC22\sin B = \sin A + \sin C \Rightarrow 4\sin\frac{B}{2}\cos\frac{B}{2} = 2\sin\frac{A + C}{2}\cos\frac{A - C}{2}

    2cosA+C2=cosAC2\Rightarrow 2\cos\frac{A + C}{2} = \cos\frac{A - C}{2}

    L.H.S. =4(1cosA)(1cosC)=4.2sin2A2.2sin2C2= 4(1 - \cos A)(1 - \cos C) = 4.2\sin^2\frac{A}{2}.2\sin^2\frac{C}{2}

    4(2sinA2sinC2)2=4(cosAC2cosA+C2)24\left(2\sin\frac{A}{2}\sin\frac{C}{2}\right)^2 = 4\left(\cos\frac{A - C}{2} - \cos\frac{A + C}{2}\right)^2

    =4(2cosA+C2cosA+C2)2=4cos2A+C2= 4\left(2\cos\frac{A + C}{2} - \cos\frac{A + C}{2}\right)^2 = 4\cos^2\frac{A + C}{2}

    R.H.S. =cosA+cosC=2cosA+C2cosAC2=4cos2A+C2= \cos A + \cos C = 2\cos\frac{A + C}{2}\cos\frac{A - C}{2} = 4\cos^2\frac{A + C}{2}

    Thus, L.H.S. = R.H.S.

  26. Given, a,b,ca, b, c are in H.P.

    1a.1b,1c\Rightarrow \frac{1}{a}. \frac{1}{b}, \frac{1}{c} are in A.P.

    sa,sb,sc\Rightarrow \frac{s}{a}, \frac{s}{b}, \frac{s}{c} are in A.P.

    sa1,sb1,sc1\Rightarrow \frac{s}{a} -1, \frac{s}{b} - 1, \frac{s}{c} - 1 are in A.P.

    bc(sb)(sc),ca(sc)(sa),ab(sa)(sc)\Rightarrow \frac{bc}{(s - b)(s - c), \frac{ca}{(s - c)(s - a)}}, \frac{ab}{(s - a)(s - c)} are in A.P.

    1sin2A2,1sin2B2,1sin2C2\Rightarrow \frac{1}{\sin^2\frac{A}{2}}, \frac{1}{\sin^2\frac{B}{2}}, \frac{1}{\sin^2\frac{C}{2}} are in A.P.

    sin2A2,sin2B2,sin2C2\Rightarrow \sin^2\frac{A}{2}, \sin^2\frac{B}{2}, \sin^2\frac{C}{2} are in H.P.

  27. We have to prove that cosAcotA2,cosBcotB2,cotCcotC2\cos A\cot\frac{A}{2}, \cos B\cot\frac{B}{2}, \cot C\cot\frac{C}{2} are in A.P.

    (12sin2A2)cotA2(12sin2B2)cotB2,(12sin2C2)cotC2\Rightarrow \left(1 - 2\sin^2\frac{A}{2}\right)\cot\frac{A}{2} \left(1 - 2\sin^2\frac{B}{2}\right)\cot\frac{B}{2}, \left(1 - 2\sin^2\frac{C}{2}\right)\cot\frac{C}{2} are in A.P.

    cotA2sinA,cotB2sinB,cotC2sinC\Rightarrow \cot\frac{A}{2} - \sin A, \cot\frac{B}{2} - \sin B, \cot\frac{C}{2} - \sin C are in A.P.

    Thus if we prove that cotA2,cotB2,cotC2\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2} and sinA,sinB,sinC\sin A, \sin B, \sin C are in A.P. separately then we would have prove the above in A.P.

    Now, cotA2+cotC2=s(sa)Δ+s(sc)Δ=sΔ[2sac]\cot \frac{A}{2} + \cot \frac{C}{2} = \frac{s(s - a)}{\Delta} + \frac{s(s - c)}{\Delta} = \frac{s}{\Delta}[2s - a - c]

    =sΔ(2s2b)[2b=a+c]=2cotB2= \frac{s}{\Delta}(2s - 2b)[\because 2b = a + c] = 2\cot \frac{B}{2}

    Thus, cotA2,cotB2,cotC2\cot \frac{A}{2}, \cot \frac{B}{2}, \cot \frac{C}{2} are in A.P.

    Since a,b,ca, b, c are in A.P.

    2b=a+c2sinB=sinA+sinC2b = a + c \Rightarrow 2\sin B = \sin A + \sin C

    Thus, sinA,sinB,sinC\sin A, \sin B, \sin C are in A.P.

    Hence the result.

  28. Let the sides be ad,a,a+da - d, a, a + d

    2s=2s = sum of the sides =3as=3a2= 3a \therefore s = \frac{3a}{2}

    Now, Δ1=\Delta_1 = Area of the triangle whose sides are in A.P.

    =3a2(3a2a+d)(3a2a)(3a2ad)= \sqrt{\frac{3a}{2}\left(\frac{3a}{2} - a + d\right)\left(\frac{3a}{2} - a\right)\left(\frac{3a}{2}- a- d\right)}

    =3a4(a+2d)(a2d)=3a4a24d2= \frac{\sqrt{3}a}{4}\sqrt{(a + 2d)(a - 2d)} = \frac{\sqrt{3}a}{4}\sqrt{a^2 - 4d^2}

    An equilateral triangle with same perimeter will have each side =a= a because perimeter is 3a.3a.

    Δ2=\Delta_2 = Area of the equilateral triangle =34a2= \frac{\sqrt{3}}{4}a^2

    Given, Δ1Δ2=35\frac{\Delta_1}{\Delta_2} = \frac{3}{5}

    a24d2a=35ad=42[d>0]\Rightarrow \frac{\sqrt{a^2 - 4d^2}}{a} = \frac{3}{5} \Rightarrow \frac{a}{d} = \frac{4}{2}[\because d > 0]

    Ratio of sides =ad:a:a+d=ad1:ad:ad+1=3:5:7= a - d: a: a + d = \frac{a}{d} - 1:\frac{a}{d}:\frac{a}{d}+1 = 3:5:7

  29. Let ABCABC be the triangle. Given, tanA,tanB,tanC\tan A, \tan B, \tan C are in A.P.

    tanAtanB=tanBtanC\therefore \tan A - \tan B = \tan B - \tan C

    So either both sides are positive or both sides are negative.

    If both sides are positive then tanA\tan A is the greatest angle and if both sides are negative then tanA\tan A is the least angle.

    According to question xx is the least or greatest tangent tanA=x\Rightarrow \tan A = x

    sin2x=x21+x2\Rightarrow \sin^2x = \frac{x^2}{1 + x^2}

    Now, 2tanB=tanA+tanCtanB=x+tanC22\tan B = \tan A + \tan C \Rightarrow \tan B = \frac{x + \tan C}{2}

    B=π(A+C)B = \pi - (A + C)

    tanB=tan(A+C)=x+tanC1xtanC\Rightarrow \tan B = -\tan(A + C) = -\frac{x + \tan C}{1 - x\tan C}

    Thus, x+tanC2=x+tanC1xtanC\frac{x + \tan C}{2} = -\frac{x + \tan C}{1 - x\tan C}

    1xtanC=2tanC=3x\Rightarrow 1 - x\tan C = -2 \Rightarrow \tan C = \frac{3}{x}

    sin2C=99+x2\sin^2C = \frac{9}{9 + x^2}

    tanB=x2+32xsin2B=(x2+3)2(x2+1)(x2+9)\Rightarrow \tan B = \frac{x^2 + 3}{2x} \Rightarrow \sin^2B = \frac{(x^2 + 3)^2}{(x^2 + 1)(x^2 + 9)}

    Now a2:b2:c2=sin2A:sin2B:sin2Ca^2:b^2:c^2 = \sin^2A:\sin^2B:\sin^2C

    Hence the result.

  30. Let the sides be ad,a,a+d.a - d, a, a + d. Let d>0,d > 0, then greatest side is a+da + d and least side is ad.a - d.

    Hence angle AA is the least angle and CC is the greatest angle. Let A=θC=θ+αB=π2θα\angle A = \theta \therefore C = \theta + \alpha \Rightarrow B = \pi - 2\theta - \alpha

    Applying sine rule, we get

    adsinθ=asin[π(2θ+α)]=a+dsin(θ+α)=2asinθ+sin(θ+α)\frac{a - d}{\sin\theta} = \frac{a}{\sin[\pi - (2\theta + \alpha)]} = \frac{a + d}{\sin(\theta + \alpha)} = \frac{2a}{\sin\theta + \sin(\theta + \alpha)}

    adsinθ=a+dsin(θ+α)\frac{a - d}{\sin\theta} = \frac{a + d}{\sin(\theta + \alpha)}

    ada+d=sinθsin(θ+α)\Rightarrow \frac{a - d}{a + d} = \frac{\sin\theta}{\sin(\theta + \alpha)}

    By componendo and dividendo, we get

    2a2d=sinθ+sin(θ+α)sin(θ+α)sinθ\frac{2a}{2d} = \frac{\sin\theta + \sin(\theta + \alpha)}{\sin(\theta + \alpha) - \sin\theta}

    da=tanα2tan(θ+α2)\Rightarrow \frac{d}{a} = \frac{\tan\frac{\alpha}{2}}{\tan\left(\theta + \frac{\alpha}{2}\right)}

    Now asin(2θ+α)=2asinθ+sin(θ+α)\frac{a}{\sin(2\theta + \alpha)} = \frac{2a}{\sin\theta + \sin(\theta + \alpha)}

    12=cos(θ+α2)cosα2\Rightarrow \frac{1}{2} = \frac{\cos\left(\theta + \frac{\alpha}{2}\right)}{\cos\frac{\alpha}{2}}

    cos(θ+α2)=cosα22\cos\left(\theta + \frac{\alpha}{2}\right) = \frac{\cos\frac{\alpha}{2}}{2}

    tan(θ+α2)=4cos2α2cosα2\tan\left(\theta + \frac{\alpha}{2}\right) = \frac{\sqrt{4 - \cos^2\frac{\alpha}{2}}}{\cos\frac{\alpha}{2}}

    da=1cosα7cosα=x\frac{d}{a} = \sqrt{\frac{1 - \cos\alpha}{7 - \cos\alpha}} = x

    Thus, required ratio =ad:a:a+d=1x:1:1+x= a - d:a:a + d = 1 - x: 1: 1 + x

  31. Consider that sides of the triangle are a,ar,ar2a, ar, ar^2 where ar2ar^2 is the greatest side.

    ar2<a+arr2r1<0\because ar^2 < a + ar \Rightarrow r^2 -r - 1 < 0

    (r12)54<0(r12)2<54\left(r - \frac{1}{2}\right) - \frac{5}{4} < 0 \Rightarrow \left(r - \frac{1}{2}\right)^2 < \frac{5}{4}

    r12<52r<12(5+1)r - \frac{1}{2} < \frac{\sqrt{5}}{2} \therefore r < \frac{1}{2}(\sqrt{5} + 1)

    r2<12(3+5)r^2 < \frac{1}{2}(3 + \sqrt{5})

    r4<12(7+35)r^4 < \frac{1}{2}(7 + 3\sqrt{5})

    1+r2r4<151 + r^2 - r^4 < - 1 - \sqrt{5}

    1+r2r4<r\therefore 1 + r^2 - r^4 < r

    cosC=a2+a2r2a2r42a2r<12\therefore \cos C = \frac{a^2 + a^2r^2 - a^2r^4}{2a^2r} < \frac{1}{2}

    cosC<cosπ3C>π3\cos C < \cos \frac{\pi}{3} \therefore C > \frac{\pi}{3}

    cosB=1+r4r22r2=12[(r13)2+1]>12\cos B = \frac{1 + r^4 - r^2}{2r^2} = \frac{1}{2}\left[\left(r - \frac{1}{3}\right)^2 + 1\right] > \frac{1}{2}

    cosB>cosπ3B<π3\therefore \cos B > \cos\frac{\pi}{3} \therefore B < \frac{\pi}{3}

    a<ar<ar2A>B>C\because a < ar <ar^2 \therefore A > B > C

    Hence A<B<π3<CA < B < \frac{\pi}{3} < C

  32. The diagram is given below:

    Problem 132

    We are given AM=p,BN=qAM = p, BN = q

    Let ACM=θ\angle ACM = \theta and BCN=ϕ\angle BCN = \phi

    Then, sinθ=pb\sin\theta = \frac{p}{b} and sinϕ=qa\sin\phi = \frac{q}{a}

    Now C=π(θ+ϕ)C = \pi - (\theta + \phi)

    cosC=cos(θ+ϕ)=sinθsinϕcosθcosϕ\cos C = -\cos(\theta + \phi) = \sin\theta\sin\phi -\cos\theta\cos\phi

    1p2b21q2a2=pqabcosC\Rightarrow \sqrt{1 - \frac{p^2}{b^2}}\sqrt{1 - \frac{q^2}{a^2}} = \frac{pq}{ab} - \cos C

    Squaring, we get

    (1p2q2)(1q2a2)=p2q2a2b22pqabcosC+cos2C\left(1 - \frac{p^2}{q^2}\right)\left(1 - \frac{q^2}{a^2}\right) = \frac{p^2q^2}{a^2b^2} - 2\frac{pq}{ab}\cos C + \cos^2C

    a2b2+b2q22abpqcosC=a2b2sin2Ca^2b^2 + b^2q^2 - 2abpq\cos C = a^2b^2\sin^2C

  33. OCB=θ,BOC=πθ(Cθ)=πC\angle OCB = \theta, \angle BOC = \pi - \theta - (C - \theta) = \pi - C

    Similarly, AOB=πB\angle AOB = \pi - B

    From AOB,\triangle AOB, we have

    OBsinθ=ABsin(πB)=csinBOB=csinθsinB\frac{OB}{\sin\theta} = \frac{AB}{\sin(\pi - B)} = \frac{c}{\sin B} \Rightarrow OB = \frac{c\sin\theta}{\sin B}

    Again from OBC,\triangle OBC, we have

    OBsin(Cθ)=BCsin(πC)=asinCOB=asin(Cθ)sinC\frac{OB}{\sin(C - \theta)} = \frac{BC}{\sin(\pi - C)} = \frac{a}{\sin C} \Rightarrow OB = \frac{a\sin(C - \theta)}{\sin C}

    csinθsinB=asin(Cθ)sinC\Rightarrow \frac{c\sin\theta}{\sin B} = \frac{a\sin(C - \theta)}{\sin C}

    sinCsinθsinC=sinAsin(Cθ)sinB\Rightarrow \sin C\sin\theta\sin C = \sin A\sin(C - \theta)\sin B

    sinCsinθsin(A+B)=sinAsinBsin(Cθ)\Rightarrow \sin C\sin\theta\sin(A + B) = \sin A\sin B\sin(C - \theta)

    sinCsinθsinAcosB+sinCsinθcosAsinB=sinAsinBsinCcosθsinAsinBcosCsinθ\Rightarrow \sin C\sin\theta\sin A\cos B + \sin C\sin\theta\cos A\sin B = \sin A\sin B\sin C\cos\theta - \sin A\sin B\cos C\sin\theta

    Dividing by sinAsinBsinCsinθ,\sin A\sin B\sin C\sin\theta, we get

    cotB+cotA=cotθcotC\Rightarrow \cot B + \cot A = \cot \theta - \cot C

    cotθ=cotA+cotB+cotC\cot\theta = \cot A + \cot B + \cot C

    In a triangle cotAcotB+cotBcotC+cotCcotA=1\cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    Thus, squaaring we get

    cosec2θ=cosec2A+cosec2B+cosec2C\cosec^2\theta = \cosec^2A + \cosec^2B + \cosec^2C

  34. The diagram is given below:

    Problem 134

    Let OO be the circumcenter and OP=x.OP = x. We have BP=a2.BP= \frac{a}{2}.

    Angle made at center will be double that made at perimeter, thus

    tanA=a2x\tan A = \frac{a}{2x}

    Similarly, tanB=b2y,tanC=c2z\tan B = \frac{b}{2y}, \tan C = \frac{c}{2z}

    In a ABC,\triangle ABC, we know that

    tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C

    ax+by+cz=abc4xyz\Rightarrow \frac{a}{x} + \frac{b}{y} + \frac{c}{z} = \frac{abc}{4xyz}

  35. Given, BDm=DCn=BCm+n\frac{BD}{m} = \frac{DC}{n} = \frac{BC}{m + n}

    BD=mam+n\Rightarrow BD = \frac{ma}{m + n}

    In ABD,\triangle ABD, we have

    x2=AB2+BD22AB.BD.cosB=c2+m2a2(m+n)22.c.mam+n.c2+a2b22cax^2 = AB^2 + BD^2 - 2AB.BD.\cos B = c^2 + \frac{m^2a^2}{(m + n)^2} - 2.c.\frac{ma}{m + n}.\frac{c^2 + a^2 - b^2}{2ca}

    Hence the result.

  36. Given, sinA+sinB+sinC=332\sin A + \sin B + \sin C = \frac{3\sqrt{3}}{2}

    cosA2cosB2cosC2=(32)3\Rightarrow \cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = \left(\frac{\sqrt{3}}{2}\right)^3

    Under the constraint A+B+C=πA + B + C = \pi the product will be maximum if A=B=C=π3A = B = C = \frac{\pi}{3}

    If A=B=CA = B = C

    cosA2cosB2cosC2=cos330=(32)3\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = \cos^330^\circ = \left(\frac{\sqrt{3}}{2}\right)^3

    Thus, the triangle is equilateral.

  37. This problem can be solved like previous problem.

  38. Given, cosA+2cosB+cosC=2\cos A + 2\cos B + \cos C = 2

    cosA+cosC=2(1cosB)2cosA+C2cosAC2=2.2sin2B2\cos A + \cos C = 2(1 - \cos B) \Rightarrow 2\cos\frac{A + C}{2}\cos\frac{A - C}{2} = 2.2\sin^2\frac{B}{2}

    cosAC2=2.cosA+C2\cos\frac{A - C}{2} = 2.\cos\frac{A + C}{2}

    2sinA+C2cosAC2=2.2sinA+C2cosA+C22\sin\frac{A + C}{2}\cos\frac{A - C}{2} = 2.2\sin\frac{A + C}{2}\cos\frac{A + C}{2}

    sinA+sinC=2.sin(A+C)=2sinBa+c=2b\sin A + \sin C = 2.\sin(A + C) = 2\sin B \Rightarrow a + c = 2b

    Thus, the sides are in a,b,c.a,b,c.

  39. tanA2+tanC2=(sb)(sc)s(sa)+(sa)(sb)s(sc)\tan\frac{A}{2} + \tan\frac{C}{2} = \sqrt{\frac{(s - b)(s - c)}{s(s - a)}} + \sqrt{\frac{(s - a)(s - b)}{s(s - c)}}

    =sbs(scsa+sasc)= \sqrt{\frac{s - b}{s}}\left(\sqrt{\frac{s - c}{s - a}} + \sqrt{\frac{s - a}{s - c}}\right)

    =sbs(sc+sa(sa)(sc))= \sqrt{\frac{s - b}{s}} \left(\frac{s - c + s - a}{\sqrt{(s - a)(s - c)}}\right)

    =bss(sb)(sa)(sc)=bscotB2= \frac{b}{s}\sqrt{\frac{s(s - b)}{(s - a)(s - c)}} = \frac{b}{s}\cot\frac{B}{2}

    Since sides are in A.P. 2b=a+c2s=3b2b = a + c \Rightarrow 2s = 3b

    tanA2+tanC2=23cotB2\tan\frac{A}{2} + \tan\frac{C}{2} = \frac{2}{3}\cot\frac{B}{2}

  40. Given, abbc=sasc\frac{a - b}{b - c} = \frac{s - a}{s - c}

    saab=scbc\Rightarrow \frac{s - a}{a - b} = \frac{s - c}{b - c}

    sa(sb)(sa)=sc(sc)(sb)\Rightarrow \frac{s - a}{(s - b) - (s - a)} = \frac{s - c}{(s - c) - (s - b)}

    Δr1Δr2Δr1=Δr3Δr3Δr2\Rightarrow \frac{\frac{\Delta}{r_1}}{\frac{\Delta}{r_2} - \frac{\Delta}{r_1}} = \frac{\frac{\Delta}{r_3}}{\frac{\Delta}{r_3} - \frac{\Delta}{r_2}}

    2r2=r1+r3\Rightarrow 2r_2 = r_1 + r_3

    Hence the result.

  41. Let the sides be a,ar,ar2.a, ar, ar^2.

    x=(b2c2)tanB+tanCtanBtanC=(b2c2)sinBcosC+cosBsinCsinBcosCcosBsinCx = (b^2 - c^2)\frac{\tan B + \tan C}{\tan B - \tan C} = (b^2 - c^2)\frac{\sin B\cos C + \cos B\sin C}{\sin B\cos C - \cos B\sin C}

    =(b2c2)sin(B+C)sin(BC)=4R2(sin2Bsin2C)sin2(B+C)sin2Bsin2C= (b^2 - c^2)\frac{\sin(B + C)}{\sin(B - C)} = 4R^2(\sin^2B - \sin^2C)\frac{\sin^2(B + C)}{\sin^2B - \sin^2C}

    =a2= a^2

    Similalry, y=a2r2y = a^2r^2 and z=a2r4z = a^2r^4

    Thus, x,y,zx,y,z are in G.P.

  42. Given, r1,r2,r3r_1,r_2,r_3 are in H.P.

    1r1,1r2,1r3\Rightarrow \frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3} are in A.P.

    1r21r1=1r31r2\Rightarrow \frac{1}{r_2} - \frac{1}{r_1} = \frac{1}{r_3}- \frac{1}{r_2}

    sbΔsaΔ=scΔsbΔ\Rightarrow \frac{s - b}{\Delta} - \frac{s - a}{\Delta} = \frac{s - c}{\Delta} - \frac{s - b}{\Delta}

    sbs+a=scs+b\Rightarrow s - b - s + a = s - c - s + b

    ab=bc\Rightarrow a - b = b - c

    Hence a,b,ca,b,c are in A.P.

  43. Given, r1=r2+r3+rr1r=r2+r3r_1 = r_2 + r_3 + r \Rightarrow r_1 - r = r_2 + r_3

    ΔsaΔs=Δsb+Δsc\Rightarrow \frac{\Delta}{s - a} - \frac{\Delta}{s} = \frac{\Delta}{s - b} + \frac{\Delta}{s - c}

    as(sa)=a(sb)(sc)\Rightarrow \frac{a}{s(s - a)} = \frac{a}{(s - b)(s - c)}

    s(sa)=(sb)(sc)\Rightarrow s(s - a) = (s - b)(s - c)

    s(b+ca)=bc\Rightarrow s(b + c - a) = bc

    b+ca2(b+ca)=bc\Rightarrow \frac{b + c - a}{2}(b + c - a) = bc

    (b+c)2a2=2bc\Rightarrow (b + c)^2 - a^2 = 2bc

    b2+c2=a2\Rightarrow b^2 + c^2 = a^2

    Thus, the triangle is right angled.

  44. R.H.S. =1+rR=1+Δsabc4Δ=1+4Δ2abcs= 1 + \frac{r}{R} = 1 + \frac{\frac{\Delta}{s}}{\frac{abc}{4\Delta}} = 1 + \frac{4\Delta^2}{abcs}

    L.H.S. =cosA+cosB+cosC=2cosA+B2cosAB2+cosC= \cos A + \cos B + \cos C = 2\cos\frac{A + B}{2}\cos\frac{A - B}{2} + \cos C

    =2sinC2cosAB2+12sin2C2= 2\sin\frac{C}{2}\cos\frac{A - B}{2} + 1 - 2\sin^2\frac{C}{2}

    =1+2sinC2[cosAB2sinC2]= 1 + 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \sin\frac{C}{2}\right]

    =1+2sinC2[cosAB2cosA+B2]= 1 + 2\sin\frac{C}{2}\left[\cos\frac{A - B}{2} - \cos\frac{A + B}{2}\right]

    =1+4sinA2sinB2sinC2= 1 + 4\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

    =1+4(sb)(sc)bc(sa)(sc)ca(sa)(sb)ab= 1 + 4\sqrt{\frac{(s - b)(s - c)}{bc}}\sqrt{\frac{(s - a)(s - c)}{ca}}\sqrt{\frac{(s - a)(s - b)}{ab}}

    =1+4(sa)(sb)(sc)abc.ss= 1 + 4\frac{(s - a)(s - b)(s - c)}{abc}.\frac{s}{s}

    =1+4Δ2abcs= 1 + 4\frac{\Delta^2}{abcs}

    Thus, L.H.S. = R.H.S.

  45. Let r1,r2,r3r_1, r_2, r_3 be the radii of escribed circles of triangle ABC,ABC, then r1,r2,r3r_1, r_2, r_3 will be the roots of the equation,

    x3(r1+r2+r3)x2+(r1r2+r2r3+r3r1)xr1r2r3=0x^3 - (r_1 + r_2 + r_3)x^2 + (r_1r_2 + r_2r_3 + r_3r_1)x - r_1r_2r_3 = 0

    Now, r1+r2+r3=Δsa+Δsb+Δscr_1 + r_2 + r_3 = \frac{\Delta}{s - a} + \frac{\Delta}{s - b} + \frac{\Delta}{s - c}

    =Δ[1sa+1sb]+ΔscΔs+Δs= \Delta\left[\frac{1}{s - a} + \frac{1}{s - b}\right] + \frac{\Delta}{s - c} - \frac{\Delta}{s} + \frac{\Delta}{s}

    =Δ[sb+sa(sa)(sb)]+Δ(ss+c)s(sc)+Δs= \Delta\left[\frac{s - b + s - a}{(s - a)(s - b)}\right] + \frac{\Delta(s - s + c)}{s(s - c)} + \frac{\Delta}{s}

    =Δ.c(sa)(sb)+Δ.cs(sc)+Δs= \frac{\Delta.c}{(s - a)(s - b)} + \frac{\Delta.c}{s(s - c)} + \frac{\Delta}{s}

    =Δ.c[s2cs+s2asbs+abs(sa)(sb)(sc)]+Δs= \Delta.c\left[\frac{s^2 - cs + s^2 - as - bs + ab}{s(s - a)(s - b)(s - c)}\right] + \frac{\Delta}{s}

    =abcΔ+Δs=r+4R= \frac{abc}{\Delta} + \frac{\Delta}{s} = r + 4R

    Now, r1r2+r2r3+r3r1=Δ2[sc+sa+sb(sa)(sb)(sc)]r_1r_2 + r_2r_3 + r_3r_1 = \Delta^2\left[\frac{s - c + s - a + s - b}{(s - a)(s - b)(s - c)}\right]

    =Δ2.s(sa)(sb)(sc)=s2= \frac{\Delta^2.s}{(s - a)(s - b)(s - c)} = s^2

    r1r2r3=Δ3.ss(sa)(sb)(sc)=Δ.s=rs2r_1r_2r_3 = \frac{\Delta^3.s}{s(s - a)(s - b)(s - c)} = \Delta.s = rs^2

    Thus, r1,r2,r3r_1, r_2, r_3 are roots of the equation

    x3(r+4R)x2+s2xrs2=0x^3 - (r + 4R)x^2 + s^2x - rs^2 = 0

  46. Let ss be the semi perimeter, then s=12s = 12 cm. Area is Δ=24\Delta = 24 sq. cm.

    Let a,b,ca,b,c be the lengths of the sides.

    r1=Δsa=2412ar_1 = \frac{\Delta}{s - a} = \frac{24}{12 - a}

    r2=Δsb=2412br_2 = \frac{\Delta}{s - b} = \frac{24}{12 - b}

    r3=Δsc=2412cr_3 = \frac{\Delta}{s - c} = \frac{24}{12 - c}

    Given r1,r2,r3r_1, r_2, r_3 are in H.P.

    1r21r1=1r31r2\therefore \frac{1}{r_2} - \frac{1}{r_1} = \frac{1}{r_3} - \frac{1}{r_2}

    12b2412a24=12c2412b24\Rightarrow \frac{12 - b}{24} - \frac{12 - a}{24} = \frac{12 - c}{24} - \frac{12 - b}{24}

    ab=bc2b=a+c\Rightarrow a - b = b - c \Rightarrow 2b = a + c

    a+b+c=24b=8a + b + c = 24 \Rightarrow b = 8 cm.

    a+c=16c=16aa + c = 16 \Rightarrow c = 16 - a

    Now, Δ=s(sa)(sb)(sc)24.24=12(12a)(12b)(12c)\Delta = \sqrt{s(s - a)(s - b)(s - c)} \Rightarrow 24.24 = 12(12 - a)(12 - b)(12 - c)

    a216a+60=0a=6,10c=10,6\Rightarrow a^2 - 16 a + 60 = 0 \Rightarrow a = 6, 10 \Rightarrow c = 10, 6

  47. asinA=bsinB=csinC=2R\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R

    Given, 8R2=a2+b2+c2=4R2(sin2A+sin2B+sin2C)8R^2 = a^2 + b^2 + c^2 = 4R^2(\sin^2A + \sin^2B + \sin^2C)

    (1sin2A)+(1sin2B)sin2C=0\Rightarrow (1 - \sin^2A) + (1 - \sin^2B) - \sin^2C = 0

    cos2A+cos2Bsin2C=0\Rightarrow \cos^2A + \cos^2B - \sin^2C = 0

    cos2A+cos(B+C)cos(BC)=0\Rightarrow \cos^2A + \cos(B + C)\cos(B - C) = 0

    cosA[cosAcos(BC)]=0\Rightarrow \cos A[\cos A - \cos(B - C)] = 0

    cosA[cos(B+C)+cos(BC)]=0\Rightarrow \cos A[\cos(B + C) + \cos(B - C)] = 0

    cosAcosBcosC=0\Rightarrow \cos A\cos B\cos C = 0

    Thus, either A=90A = 90^\circ or B=90B = 90^\circ or C=90C = 90^\circ and hence the triangle is 90.90^\circ.

  48. The diagram is given below:

    Problem 148

    Let OO be the center of the inscribed circle of triangle ABC.ABC. We have drawn another circle passitng through O,BO, B and C.C. Suppose that the radius of this circle is R.R. Applying sine law in OBC,\triangle OBC, we get

    asinBOC=2RR=a2sinBOC\frac{a}{\sin BOC} = 2R \Rightarrow R = \frac{a}{2\sin BOC}

    Now since OO is the center of the inscribed circle. Hence BOBO and OCOC are bisectors of angle BB and CC respectively

    OBC=B2\angle OBC = \frac{B}{2} and OCB=C2\angle OCB = \frac{C}{2}

    BOC=180B2C2=90+A2\Rightarrow \angle BOC = 180^\circ - \frac{B}{2} - \frac{C}{2} = 90^\circ + \frac{A}{2}

    R=a2.sin(90+A2)=a2secA2\therefore R = \frac{a}{2.\sin\left(90^\circ + \frac{A}{2}\right)} = \frac{a}{2}\sec\frac{A}{2}

  49. The diagram is given below:

    Problem 149

    Let the centers of the circle be C1,C2C_1, C_2 and C3C_3 and theier radii be a,ba, b and cc respectively. Let the circles touch each other at P,QP, Q and R.R. Let the tangents at their points of contact meet at O.O.

    Since OPOP and OQOQ are two tangents from OO to the circle C3,C_3, they are equal i.e. OP=OQOP = OQ

    Similarly, OQ=OROP=OQ=OROQ = OR \Rightarrow OP=OQ=OR

    Also, OPC1C3,OQC2C3OP\perp C_1C_3, OQ\perp C_2C_3 and ORC1C2OR\perp C_1C_2

    Hence, OP,OQOP, OQ and OROR are the in-radii of C1C2C3.\triangle C_1C_2C_3.

    Let OP=OQ=OR=rOP=OQ=OR = r which is given as 4.4.

    r=Δsr = \frac{\Delta}{s} where s=s = semi-perimeter of C1C2C3\triangle C_1C_2C_3 and Δ=\Delta = are of C1C2C3\triangle C_1C_2C_3

    Now, s=(a+b)+(b+c)+(c+a)2=a+b+cs = \frac{(a + b) + (b + c) + (c + a)}{2} = a + b + c and

    Δ=s(sab)(sbc)(sca)=(a+b+c)c.a.b\Delta = \sqrt{s(s - a - b)(s - b - c)(s - c - a)} = \sqrt{(a + b + c)c.a.b}

    r=Δs=abca+b+c=4r = \frac{\Delta}{s} = \sqrt{\frac{abc}{a + b + c}} = 4

    abca+b+c=16\Rightarrow \frac{abc}{a + b + c} = 16

  50. The diagram is given below:

    Problem 150

    Let RR be the circum-radius of the ABC.\triangle ABC. From geometry we know that

    AH=2OE=2RcosAAH = 2OE = 2R\cos A and OA=ROA = R

    BOC=2ACOE=AOCE=90A\angle BOC = 2A \therefore \angle COE = A \Rightarrow \angle OCE = 90^\circ - A

    OCA=BCAOCE=C(90A)=A+C90\therefore \angle OCA = \angle BCA - \angle OCE = C - (90^\circ - A) = A + C - 90^\circ

    OA=OCOAC=OCA=A+C90\because OA = OC \therefore \angle OAC = \angle OCA = A + C - 90^\circ

    From CDA,CAD=90C\triangle CDA, \angle CAD = 90^\circ - C

    HAO=CADCAO=(90C)(A+C90)\therefore \angle HAO = \angle CAD - \angle CAO = (90^\circ - C) - (A + C - 90^\circ)

    =180A2C=A+B+CA2C=BC= 180^\circ - A - 2C = A + B + C - A - 2C = B - C

    Applying cosine rule in AHO,\triangle AHO, we get

    cos(BC)=AH2+AO2OH22AH.AO\cos(B - C) = \frac{AH^2 + AO^2 - OH^2}{2AH.AO}

    OH2=4R2cos2A+R22.2RcosA.Rcos(BC)OH^2 = 4R^2\cos^2A + R^2 - 2.2R\cos A.R\cos(B - C)

    =R2[4cos2A+14cosAcos(BC)]=R2[14cosA{cos(BC)cosA}]= R^2[4\cos^2A + 1 - 4\cos A\cos(B - C)] = R^2[1 - 4\cos A\{\cos(B - C) - \cos A\}]

    =R2[14cosA{cos(BC)+cos(B+C)}]= R^2[1 - 4\cos A\{\cos(B - C) + \cos(B + C)\}]

    =R2[18cosAcosBcosC]= R^2[1 - 8\cos A\cos B\cos C]

    OH=R18cosAcosBcosCOH = R\sqrt{1 - 8\cos A\cos B\cos C}