The diagram is given below:
Let BD=DE=EC=x. Also let,
∠BAD=α,∠DAE=β,EAC=γ,CEA=θ
Given, tanα=t1,tanβ=t2,tanγ=t3
Applying m:n rule in △ABC, we get
(2x+x)cotθ=2xcot(α+β)−xcotγ
From △ADC, we get
2xcotθ=xcotβ−xcotγ
⇒23=cotβ−cotγ2(α+β)−cotγ
⇒3cotβ−3cotγ=4cot(α+β)−2cotγ
3cotβ−cotγ=cotα+cotβ4(cotαcotβ−1)
3cot2β−cotβcotγ+3cotαcotβ−cotαcotγ=4cotαcotβ−4
4+4cot2β=cot2β+cotαcotβ+cotβcotγ+cotαcotγ
4(1+cot2β)=(cotβ+cotα)(cotβ+cotγ)
4(1+t221)=(t11+t21)(t21+t31)
The diagram is given below:
Let the medians be AD,BE and CF meet at O. From question,
∠BOC=α,∠COA=β,∠AOB=γ
Let AD=p1,BE=p2,CF=p3
AO:OD=2:1⇒AO=32p1
Similalrly, OB=32p2,OC=32p3
Applying cosine rule in △AOC,
cosβ=2.OA.OCOA2+OC2−AC2=2.32p132p394p12+94p32−b2
cosβ=8p1p34p12+4p32−9b2
ΔAOC=21.OA.OC.sinβ
31Δ=2132p132p3sinβ where Δ is area of triangle ABC.
sinβ=2p1p33Δ
⇒cosβ=12Δ4p12+4p32−9b2
∵AD is mean of △ABC
∴AB2+AC2=2BD2+2AD2
⇒b2+c2=24a2+2p12
p12=42b2+2c2−a2
Similarly, p22=42c2+2a2−b2
and p32=42a2+2b2−c2
⇒cosβ=12Δ(2b2+2c2−a2)+(2a2+2b2−c2)−9b2
=12Δa2+c2−5b2
Similarly, cosα=12Δb2+c2−5a2
Similarly, cosγ=12Δa2+b2−5c2
cosα+cosβ+cosγ=12Δ−3(a2+b2+c2)
=−4Δa2+b2+c2
cotA+cotB+cotC=2bcsinAb2+c2−a2+2casinBc2+a2−b2+2absinCa2+b2−c2
=4Δa2+b2+c2
⇒cotα+cotβ+cotγ+cotA+cotB+cotC=0
The diagram is given below:
Let AD be the perpendicular from A on BC. When AD is extended it meets the circumscrbing circle
at E. Given, DE=α.
Since angles in the same segment are equal, ∴∠AEB=∠ACB=∠C
and ∠AEC=∠ABC=∠B
From right angled △BDE,tanC=DEBD
From right angled △CDE,tanB=DECD
tanB+tanC=αa
Similarly, tanC+tanA=βb
and tanA+tanB=γc
Adding, we get
αa+βb+γc=2(tanA+tanB+tanC)
The diagram is given below:
Let H be the orthocenter of triangle ABC.
From question, HA=p,HB=q,HC=r.
From figure, ∠HBD=∠EBC=90∘−C
∠HCD=∠FCB=90∘−B
∴∠BHC=180∘−(∠HBD+∠HCD)
=180∘−[90∘−C+90∘−B]=B+C=π−A
Similarly, ∠AHC=π−B and ∠AHB=π−C
Now ΔBHC+ΔCHA+ΔAHB=ΔABC
⇒21[qrsinBHC+rpsinCHA+pqsinAHB]=Δ
⇒21[qrsinA+rpsinB+pqsinC]=Δ
⇒aqr+brp+cpq=abc
The diagram is given below:
Let O be the center of unit circle and A be the center of circle whose arc BPC divides the unit circle
in two equal parts.
i.e area of the curve ABPCA=21 area of the unit circle =2π
Let the radius of this new circle be r.
Then, AC=AB=AP=r
∵OB=OC=1∴∠OCA=∠OAC=θ
Applying sine rule in △AOC,
sin(π−2θ)r=sinθ1
r=2cosθ
Now area of ABPCA=2[ Are of sector ACP+ Area of sector OAC− Are of △OAC]
=2[21r2θ+2112(π−2θ)−21sin(π−2θ)]
=θ.4cos2θ+π−2θ−sin2θ[∵r=2cosθ]
=2θcos2θ−sin2θ+π
⇒2π=2θcos2θ−sin2θ+π
⇒2π=sin2θ−2θcos2θ
The diagram is given below:
Let EF be the perpendicular bisector of BC and O the center of the square. From question,
Let BF=FC=a⇒BC=EF=2a and OE=OF=a
Let OP=x⇒OQ=x
⇒PF=a−x,QF=a+x
From right angled △BPF,
tanB=BFPF=xa−x
From right angled △QFC,
tanC=aa+x
⇒(tanB−tanC)2=a24x2
In triangle ABC,
tanA=tan[π−(B+C)]=−tan(B+C)=−x22a2
⇒tanA(tanB−tanC)2+8=0
The diagram is given below:
∵CD is internal bisector of ∠C
∴DBAD=ab
⇒BD=a+bac
Since angles of the same segment are equal.
∴∠ABE=∠ACE=2C
and ∠BEC=∠BAC=A
Applying sine rule in △BEC,
sinCBECE=sinBECBC⇒CE=sinAasin(a+2C)
Applying sine rule in △BDE,
sin2CDE=sinABD⇒DE=(a+b)sinAacsin2C
⇒DECE=acsin2Casin(B+2C)(a+b)
⇒DECE=csin2C(a+b)sin(B+2C)
Now, sin2Csin(B+2C)=2sin2Ccos2Csin(B+2C).2cos2C
=sinCsin(B+C)+sinB=sinCsinA+sinB=ca+b
Thus, DECE=c2(a+b)2
The diagram is given below:
∵AD is the interna; bisector of angle A,
DCBD=ACBA=bc
⇒cBD=bDC=b+cBD+DC
⇒cBD=b+ca
Similarly, aBF=a+bc
Now ΔABCΔBDF=a.c.sinBBD.BF.sinB=(a+b)(b+c)ac
Similarly, ΔABCΔCDE=(a+c)(b+c)ab
and ΔABCΔAEF=(a+b)(a+c)bc
∴ΔABCΔDEF=ΔABCΔABC−(ΔBDF+ΔCDE+ΔAEF)
=1−(a+b)(b+c)ac−(a+c)(b+c)ab−(a+b)(a+c)bc
=(a+b)(b+c)(c+a)2abc
ΔDEF=(a+b)(b+c)(c+a)2.Δ.abc
The diagram is given below:
∵A+B+C=π⇒3α+3β+3γ=π⇒α+β+γ=3π
Clearly, ∠ADB=60∘
Applying sine rule in △ADB,
sinβAR=sin[π−(α+β)]c
AR=sin(α+β)csinβ=sin(α+β)2RsinCsinβ
=sin(60∘−γ)2Rsin3γsinβ
=sin(60∘−γ)2R(3sinγ−4sin3γ)sinβ.cos(30∘−γcos(30∘−γ)
=sin(09∘−2γ)+sin30∘4Rsinβsinγ.(3−4sin2γ).cos(30∘−γ)
=cos2γ+214Rsinβsinγcos(30∘−γ)(3−4sin2γ)
=2cos2γ+18Rsinβsinγcos(30∘−γ)(3−4sin2γ)
=2(1−2sin2γ)+18Rsinβsinγcos(30∘−γ)(3−4sin2γ)
=8Rsinβsinγcos(30∘−γ)
The diagram is given below:
From figure, ∠AOX=2π−θ
Since OX is tangent to the circle, OB will pass through the center P of the circle and hence
OB will be the diameter of the given circle.
⇒∠OAB=90∘⇒∠OBA=90∘−θ
By property of circle, OAQ=∠OBA=90∘−θ
Also, AOQ=90∘−theta[∵OQ=OA]
∴OQA=2θ⇒AQX=π−2θ
∠BOX=1π
Applying sine rule in △ABT,weget
sin(π−2θ)AB=sinθAT
sin2θAB=sinθt⇒AB=2tcosθ
From right angled △AOB,
tanθ=OAAB⇒AB=ctanθ
⇒ctanθ=2tcosθ
⇒csinθ−t(1+cos2θ)=0
Let AN⊥OB
Now, ON+NB=OB
⇒ccosθ+ABsinθ=d
⇒ccosθ+2tsinθcosθ=d
⇒ccosθ+tsin2θ=d
Since AD is the median ∴BD=DC=2a
Also, ∵∠DAE=∠CAE=3A
AE is common and ∠AED=angleAEC=90∘
∴AD=AC=b
Applying cosine rule in △ABD,
cos3A=2.AB.ADAB2+AD2−BD2
=2.c.bc2+b2−4a2=8bc4b2+4c2−a2
Applying cosine rule in △ABC,
cosA=2bcb2+c2−a2
4cos33A−3cos3A=2bcb2+c2−a2
⇒4cos33A−4cos3A=2bcb2+c2−a2−8bc4b2+4c2−a2
⇒4cos3A(1−cos23A)=8bc4b2+4c2−a2−2bcb2+c2−a2
⇒cos3A.sin23A=32bc3a2
Given, cosA+cosB+cosC=23
⇒2bcb2+c2−a2+2cac2+a2−b2+2aba2+b2−c2=23
⇒a(b2+c2−a2)+b(c2+a2−b2)+c(a2+b2−c2)=3abc
⇒a(b−c)2+b(c−a)2+c(a−b)2=a3+b3+c3−3abc=21[(a−b)2+(b−c)2+(c−a)2](a+b+c)
⇒2b+c−a(b−c)2+2c+a−b(c−a)2+2a+b−c(a−b)2=0
⇒(a−b)2=(b−c)2=(c−a)2=0
⇒a=b=c
If the △ABC is equilateral ⇒A=B=C=60∘
⇒tanA+tanB+tanC=33
If tanA+tanB+tanC=33
then tanAtanBtanC=33
Thus, A.M. of tanA,tanB,tanC= G.M. of tanA,tanB,tanC
⇒tanA=tanB=tanC
L.H.S. =(a+b+c)tan2C=2R(sinA+sinB+sinC)cos2Csin2C
=2R(2sin2A+Bcos2A−B+2sin2Ccos2C)cos2Csin2C
=2R(2cos2Ccos2A−B+2sin2Ccos2C)cos2Csin2C
=2R(2sin2Ccos2A−B+2sin22C)
=2R(2cos2A+Bcos2A−B+2sin22C)
=2R(cosA+cosB+2sin22C)
R.H.S =acot2A+bcot2B−ccot2C
=2R(sinAcot2A=sinBcot2B−sinCcot2C)
=2R(2cos22A+2cos22B−2cos22C)
=2R(2cos22A+2cos22B−2+2sin22C)
=2R(cosA+cosB+2sin22C)
Thus, L.H.S. = R.H.S.
sin2θ=21−cos2θ⇒sin4θ=4(1−cos2θ)2
Also, for a triangle cos2A+cos2B+cos2C=−1−4cosAcosBcosC
and cos22A+cos2B+cos2C=1+2cos2Acos2Bcos2C
L.H.S. =4(1−cos2A)2+4(1−cos2B)2+4(1−cos2C)2
=41[3−2(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]
=41[3−2(−1−4cosAcosBcosC)+1+2cos2Acos2Bcos2C]
=23+2cosAcosBcosC+21cos2Acos2Bcos2C= R.H.S.
Observe the relations in previous problem.
L.H.S. =4(1+cos2A)2+4(1+cos2B)2+4(1+cos2C)2
=41[3+2(cos2A+cos2B+cos2C)+cos22A+cos22B+cos22C]
=41[3+2(−1−4cosAcosBcosC)+1+2cos2Acos2Bcos2C]
=21−2cosAcosBcosC+21cos2Acos2Bcos2C= R.H.S.
L.H.S. =cotB+cosAsinBcosC=cosAsinBcosBcosA+cos[π−(A+B)]
=cosAsinBcosBcosA−cos(A+B)=cosAsinBsinAsinB
=tanA
R.H.S. =cotC+cosAsinCcosB=cosAsinCcosCcosA+cos[π−(A+C)]
=cosAsinCsinAsinC=tanA
Thus, L.H.S. = R.H.S.
b2−c2asin(B−C)=2R1.sin2B−sin2CsinAsin(B−C)
=2R1.sin(B+C)sin(B−C)sin[π−(B+C)]sin(B−C)
=2R1[∵sin{π−(B+C)=sin(B+C)}]
Similarly, c2−a2bsin(C−A)=a2−b2csin(A−B)=2R1
R.H.S. =ab−ccos2A=sinAsinB−sinCcos2A
=2sin2Acos2A2cos2B+Csin2B−Ccos2A
=sin2Asin2Asin2B−C
=sin2B−C= L.H.S.
L.H.S. =sin3Acos(B−C)+sin3Bcos(C−A)+sin3Ccos(A−B)=3sinAsinBsinC
=sin2Asin(B+C)cos(B−C)+sin2Bsin(C+A)cos(C−A)+sin2Csin(A+B)cos(A−B)
=21[sin2A(sin2B+sin2C)+sin2B(sin2C+sin2A)+sin2C(sin2A+sin2B)]
=sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)
=sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinAsinC(sinAcosC+cosAsinC)
=sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinAsinCsin(A+C)
=3sinAsinBsinC= R.H.S.
L.H.S. =sin3A+sin3B+sin3C=43[sinA+sinB+sinC]−31[sin3A+sin3B+sin3C]
sinA+sinB+sinC=2sin2A+Bcos2A−B+2sin2Ccos2C
=2cos2C[cos2A−B+cos2A−B]
=4cos2Acos2Bcos2C
Similarly, sin3A+sin3B+sin3C=4cos23Acos23Bcos23C
sin3Asin3(B−C)=sin3A43sin(B−C)−sin3(B−C)
Now sin3Asin3(B−C)=sin3(B+C)sin3(B−C)=sin23B−sin23C
and sin3Asin(B−C)=(3sinA−4sin3A)sin(B−C)
=3sin(B+C)sin(B−C)−4sin2Asin(B+C)sin(B−C)
=3[sin2B−sin2C]−4sin2A(sin2B−sin2C)
Thus, sin3Asin3(B−C)+sin3Bsin3(C−A)+sin3Csin3(A−B)=0
sin3Acos3(B−C)=sin3A.43cos(B−C)+cos3(B−C
Now, 41sin3Acos3(B−C)=812sin3(B+C)cos3(B−C)=81(sin6B+sin6C)
So ∑sin3Acos3(B−C)=41(sin6A+sin6B+sin6C)
Again, 43sin3A.cos(B−C)=43(3sinA−4sin3A)cos(B−C)
=89[(sin2B+sin2C)−3sin3Acos(B−C)
We have just proved that ∑sin3Acos(B−C)=3sinAsinBsinC
∴89∑(sin2B+sin2C)=49(sin2A+sin2B+sin2C)
and 3∑sin3Acos(B−C)=9sinAsinBsinC
Now, sin2A+sin2B+sin2C=4sinAsinBsinC
and sin6A+sin6B+sin6C=4sin3Asin3Bsin3C
Thus, the sum would be sin3Asin3Bsin3C
L.H.S. =(Δs(s−a)+s(s−b))(aca.(s−a)(s−c)+bcb(s−b)(s−c))
=Δs(2s−a−b)(c(s−c)(2s−a−b))
=ccot2C= R.H.S.
Given a,b,c are in A.P. ∴2b=a+c
2sinB=sinA+sinC⇒4sin2Bcos2B=2sin2A+Ccos2A−C
⇒2cos2A+C=cos2A−C
L.H.S. =4(1−cosA)(1−cosC)=4.2sin22A.2sin22C
4(2sin2Asin2C)2=4(cos2A−C−cos2A+C)2
=4(2cos2A+C−cos2A+C)2=4cos22A+C
R.H.S. =cosA+cosC=2cos2A+Ccos2A−C=4cos22A+C
Thus, L.H.S. = R.H.S.
Given, a,b,c are in H.P.
⇒a1.b1,c1 are in A.P.
⇒as,bs,cs are in A.P.
⇒as−1,bs−1,cs−1 are in A.P.
⇒(s−b)(s−c),(s−c)(s−a)cabc,(s−a)(s−c)ab are in A.P.
⇒sin22A1,sin22B1,sin22C1 are in A.P.
⇒sin22A,sin22B,sin22C are in H.P.
We have to prove that cosAcot2A,cosBcot2B,cotCcot2C are in A.P.
⇒(1−2sin22A)cot2A(1−2sin22B)cot2B,(1−2sin22C)cot2C are in A.P.
⇒cot2A−sinA,cot2B−sinB,cot2C−sinC are in A.P.
Thus if we prove that cot2A,cot2B,cot2C and sinA,sinB,sinC are in
A.P. separately then we would have prove the above in A.P.
Now, cot2A+cot2C=Δs(s−a)+Δ