19. Properties of Triangles’ Solutions Part 2#

  1. The diagram is given below:

    Problem 51

    From figure, ADC=90+B\angle ADC = 90^\circ + B

    By applying m:nm:n rule in triangle ABC,ABC, we get

    (1+1)cot(90+B)=1.cot901.cot(A90)(1 + 1)\cot(90^\circ + B) = 1.\cot90^\circ - 1.\cot(A-90^\circ)

    2tanB=0cot[(90A)]-2\tan B = 0 - \cot[-(90^\circ - A)]

    2tanB=tanAtanA+2tanB=0-2\tan B = \tan A \Rightarrow \tan A + 2\tan B = 0

  2. Given, cotA+cotB+cotC=3\cot A + \cot B + \cot C = \sqrt{3}

    Squaring, cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA=3\cot^2A + \cot^2B + \cot^2C + 2\cot A\cot B + 2\cot B\cot C + 2\cot C\cot A = 3

    Since A+B+C=πA+B=πCA + B + C = \pi \Rightarrow A + B = \pi - C

    cot(A+B)=cot(πC)\cot(A + B) = \cot(\pi - C)

    cotAcotB1cotA+cotB=cotC\frac{\cot A\cot B - 1}{\cot A + \cot B} = -\cot C

    cotAcotB+cotBcotC+cotCcotA=1\cot A\cot B + \cot B\cot C + \cot C\cot A = 1

    cot2A+cot2B+cot2C+2cotAcotB+2cotBcotC+2cotCcotA=3(cotAcotB+cotBcotC+cotCcotA)\Rightarrow \cot^2A + \cot^2B + \cot^2C + 2\cot A\cot B + 2\cot B\cot C + 2\cot C\cot A = 3(\cot A\cot B + \cot B\cot C + \cot C\cot A)

    12[(cotAcotB)2+(cotBcotC)2+(cotCcotA)2]=0\frac{1}{2}[(\cot A - \cot B)^2 + (\cot B - \cot C)^2 + (\cot C - \cot A)^2] = 0

    cotA=cotB=cotC\Rightarrow \cot A = \cot B = \cot C

    A=B=C\Rightarrow A = B = C i.e. triangle is equilateral.

  3. Given, (a2+b2)sin(AB)=(a2b2)sin(A+B)(a^2 + b^2)\sin(A - B) = (a^2 - b^2)\sin(A + B)

    (sin2A+sin2B)sin(AB)=(sin2Asin2B)sin(A+B)(\sin^2A + \sin^2B)\sin(A - B) = (\sin^2A - \sin^2B)\sin(A + B)

    [sin2Asin2B=sin(A+B)sin(AB)][\because \sin^2A - \sin^2B = \sin(A + B)\sin(A - B)]

    (sin2A+sin2B)sin(AB)=sin2(A+B)sin(AB)\Rightarrow (\sin^2A + \sin^2B)\sin(A - B) = \sin^2(A + B)\sin(A - B)

    sin(AB)[sin2A+sin2Bsin2C]=0\Rightarrow \sin(A - B)[\sin^2A + \sin^2B - \sin^2C] = 0

    Either sin(AB)=0\sin(A - B) = 0 or sin2A+sin2Bsin2C=0\sin^2A + \sin^2B - \sin^2C = 0

    A=BA = B or a2+b2c2=0a^2 + b^2 - c^2 = 0

    Thus, triangle is either isosceles or right angled.

  4. R.H.S. =c(cosAcosθ+sinAsinθ)+a(cosCcosθsinCsinθ)= c(\cos A\cos\theta + \sin A\sin\theta) + a(\cos C\cos\theta - \sin C\sin\theta)

    =cosθ(ccosA+acosC)+sinθ(csinAasinC)= \cos\theta(c\cos A + a\cos C) + \sin\theta(c\sin A - a\sin C)

    =bcosθ+sinθ(c.a2Ra.c2R)=b\cos\theta + \sin\theta\left(c.\frac{a}{2R} - a.\frac{c}{2R}\right)

    =bcosθ== b\cos\theta = L.H.S.

  5. The diagram is given below:

    Problem 51

    bsin(B+θ)=a2sin(Aθ)\frac{b}{\sin(B + \theta)} = \frac{a}{2\sin(A - \theta)}

    csin[π(B+θ)]=a2sinθ\frac{c}{\sin[\pi -(B + \theta)]} = \frac{a}{2\sin\theta}

    bsin(Aθ)=csinθ\Rightarrow b\sin(A - \theta) = c\sin\theta

    sinB(sinAcosθcosAsinθ)=sinCsinθ=(sinAcosB+sinBcosA)sinθ\Rightarrow \sin B(\sin A\cos\theta - \cos A\sin\theta) = \sin C\sin\theta = (\sin A\cos B + \sin B \cos A)\sin\theta

    cotθ=2cotA+cotB\Rightarrow \cot\theta = 2\cot A + \cot B

  6. The diagram is given below:

    Problem 56

    ΔABC=ΔABD+ΔACD\Delta ABC = \Delta ABD + \Delta ACD

    12bcsinA=12AD.csinA2+12AD.bsinA2\frac{1}{2}bc\sin A = \frac{1}{2}AD.c\sin\frac{A}{2} + \frac{1}{2}AD.b\sin\frac{A}{2}

    AD=2bcb+ccosA2\Rightarrow AD = \frac{2bc}{b + c}\cos\frac{A}{2}

  7. The diagram is given below:

    Problem 57

    ACB=π(α+β+γ)\angle ACB = \pi - (\alpha + \beta + \gamma)

    sinACB=sin(α+β+γ)\sin ACB = \sin(\alpha + \beta + \gamma)

    In ABC\triangle ABC

    ABsinACB=ACsinγ\frac{AB}{\sin ACB} = \frac{AC}{\sin\gamma}

    AC=asinγsin(α+β+γ)AC = \frac{a\sin\gamma}{\sin(\alpha + \beta + \gamma)}

    In ACD\triangle ACD

    CDsinα=ACsinβ\frac{CD}{\sin\alpha} = \frac{AC}{\sin\beta}

    CD=asinαsinγsinβsin(α+β+γ)CD = \frac{a\sin\alpha\sin\gamma}{\sin\beta\sin(\alpha + \beta + \gamma)}

  8. Given, 2cosA=sinBsinC2\cos A = \frac{\sin B}{\sin C}

    2cosAsinC=sinB=sin[π(A+C)]=sin(A+C)2\cos A\sin C = \sin B = \sin[\pi - (A + C)] = \sin(A + C)

    2cosAsinC=sinAcosC+cosAsinC2\cos A\sin C = \sin A\cos C + \cos A\sin C

    cosAsinC=sinAcosCtanA=tanC\cos A\sin C = \sin A\cos C\Rightarrow \tan A = \tan C

    A=C\Rightarrow A = C

    Thus, the triangle is isosceles.

  9. Let such angles be AA and B.B. Then,

    cosA=1a\cos A = \frac{1}{a} and cosB=1b\cos B = \frac{1}{b}

    sinAcosA=sinBcosB\Rightarrow \sin A\cos A = \sin B\cos B

    sin2A=sin2B\sin 2A = \sin 2B or sin2A=sin[π2B]\sin 2A = \sin[\pi - 2B]

    A=BA = B or A+B=π2C=π2A + B = \frac{\pi}{2} \Rightarrow C = \frac{\pi}{2}

    Thus, the triangle is either isosceles or right angled.

  10. Given atanA+btanB=(a+b)tanA+B2a\tan A + b\tan B = (a + b)\tan \frac{A + B}{2}

    a(sinAcosAsinA+B2cosA+B2)=b(sinA+B2cosA+B2sinBcosB)\Rightarrow a\left(\frac{\sin A}{\cos A} - \frac{\sin \frac{A + B}{2}}{\cos\frac{A + B}{2}}\right) = b\left(\frac{\sin\frac{A + B}{2}}{\cos \frac{A + B}{2}} - \frac{\sin B}{\cos B}\right)

    a.sinAB2cosAcosA+B2=b.sinAB2cosBcosA+B2\Rightarrow a.\frac{\sin\frac{A - B}{2}}{\cos A\cos \frac{A + B}{2}} = b.\frac{\sin\frac{A - B}{2}}{\cos B\cos\frac{A + B}{2}}

    tanA=tanBA=B\Rightarrow \tan A = \tan B \Rightarrow A = B

    Thus, the triangle is isosceles.

  11. Given, tanAtanBtanA+tanB=cbc\frac{\tan A - \tan B}{\tan A + \tan B} = \frac{c - b}{c}

    sinAcosAsinBcosBsinAcosA+sinBcosB=sinCsinBsinC\Rightarrow \frac{\frac{\sin A}{\cos A} - \frac{\sin B}{\cos B}}{\frac{\sin A}{\cos A} + \frac{\sin B}{\cos B}} = \frac{\sin C - \sin B}{\sin C}

    sinAcosBsinBcosAsinAcosB+sinBcosA=sin(A+B)sinBsin(A+B)\Rightarrow \frac{\sin A\cos B - \sin B\cos A}{\sin A\cos B + \sin B\cos A} = \frac{\sin (A + B) - \sin B}{\sin (A + B)}

    sinAcosBsinBcosAsin(A+B)=sin(A+B)sinBsin(A+B)\Rightarrow \frac{\sin A\cos B - \sin B\cos A}{\sin(A + B)} = \frac{\sin(A + B) - \sin B}{\sin(A + B)}

    sinAcosBsinBcosA=sinAcosB+sinBcosAsinB\Rightarrow \sin A\cos B - \sin B\cos A = \sin A\cos B + \sin B\cos A - \sin B

    sinB=2sinBcosAcosA=12A=60.\Rightarrow \sin B = 2\sin B\cos A \Rightarrow \cos A = \frac{1}{2} \Rightarrow A = 60^\circ.

  12. We know that cosC=a2+b2c22ab\cos C = \frac{a^2 + b^2 - c^2}{2ab}

    Given, c42(a2+b2)c2+a4+a2b2+b4=0c^4 - 2(a^2 + b^2)c^2 + a^4 + a^2b^2 + b^4 = 0

    a4+b4+c42a2c22b2c2+2a2b2=a2b2\Rightarrow a^4 + b^4 + c^4 - 2a^2c^2 - 2b^2c^2 + 2a^2b^2 = a^2b^2

    (a2+b2c2)2=a2b2a2+b2+c2=±ab(a^2 + b^2 -c^2)^2 = a^2b^2 \Rightarrow a^2 + b^2 + c^2 = \pm ab

    cosC=±12A=60\Rightarrow \cos C = \pm\frac{1}{2} \Rightarrow A = 60^\circ or 120120^\circ

  13. Given, cosA+2cosCcosA+2cosB=sinBsinC\frac{\cos A + 2\cos C}{\cos A + 2\cos B} = \frac{\sin B}{\sin C}

    cosA(sinCsinB)=2sinBcosB2sinCcosC=sin2Bsin2C\Rightarrow \cos A(\sin C - \sin B) = 2\sin B\cos B - 2\sin C\cos C = \sin 2B - \sin 2C

    2cosA.cosB+C2sinCB2=2cos(B+C)sin(BC)\Rightarrow 2\cos A.\cos\frac{B + C}{2}\sin\frac{C - B}{2} = 2\cos(B + C)\sin(B - C)

    cosA.cosB+C2sinCB2=2cosA.sinBC2.cosBC2\cos A.\cos\frac{B + C}{2}\sin\frac{C - B}{2} = -2\cos A.\sin\frac{B - C}{2}.\cos\frac{B - C}{2}

    If B=CB = C then above it 0=00 = 0 i.e. triangle is isosceles.

    If A=90A = 90^\circ then above is 0=00 =0 i.e. triangle is right angled.

  14. tanA2,tanB2,tanC2\because \tan\frac{A}{2}, \tan\frac{B}{2}, \tan\frac{C}{2} are in A.P.

    tanA2tanB2=tanB2tanC2\tan\frac{A}{2} - \tan\frac{B}{2} = \tan\frac{B}{2} - \tan \frac{C}{2}

    sin(A2B2)cosA2cosB2=sin(B2C2)cosB2cosC2\frac{\sin\left(\frac{A}{2} - \frac{B}{2}\right)}{\cos\frac{A}{2}\cos\frac{B}{2}} = \frac{\sin\left(\frac{B}{2} - \frac{C}{2}\right)}{\cos\frac{B}{2}\cos\frac{C}{2}}

    sin(A2B2)cosC2=sin(B2C2)cosA2\sin\left(\frac{A}{2} - \frac{B}{2}\right)\cos\frac{C}{2} = \sin\left(\frac{B}{2} - \frac{C}{2}\right)\cos\frac{A}{2}

    sin(A2B2)sin(A2+B2)=sin(B2C2)sin(B2+C2)\sin\left(\frac{A}{2} - \frac{B}{2}\right)\sin\left(\frac{A}{2} + \frac{B}{2}\right) = \sin\left(\frac{B}{2} - \frac{C}{2}\right)\sin\left(\frac{B}{2} + \frac{C}{2}\right)

    cosBcosA=cosCcosB\Rightarrow \cos B - \cos A = \cos C - \cos B

    Thus, cosA,cosB,cosC\cos A, \cos B, \cos C are in A.P.

  15. Given, acos2C2+ccos2A2=3b2a\cos^2\frac{C}{2} + c\cos^2\frac{A}{2} = \frac{3b}{2}

    a.s(sc)ab+c.s(sa)bc=3b2a.\frac{s(s - c)}{ab} + c.\frac{s(s - a)}{bc} = \frac{3b}{2}

    sb[2sac]=3b2\frac{s}{b}[2s - a - c] = \frac{3b}{2}

    2s=3ba+c=2b2s = 3b \Rightarrow a + c = 2b

    We have to prove that cotA2+cotC2=2cotB2\cot\frac{A}{2} + \cot\frac{C}{2} = 2\cot\frac{B}{2}

    L.H.S. =s(sa)Δ+s(sc)Δ= \frac{s(s - a)}{\Delta} + \frac{s(s - c)}{\Delta}

    =sΔ(2sac)=2s(sb)Δ=2cotB2== \frac{s}{\Delta}(2s - a - c) = \frac{2s(s - b)}{\Delta} = 2\cot\frac{B}{2} = R.H.S.

  16. Given, a2,b2,c2a^2, b^2, c^2 are in A.P.

    b2a2=c2b2\Rightarrow b^2 - a^2 = c^2 - b^2

    sin2Bsin2A=sin2Csin2B\Rightarrow \sin^2B - \sin^2A = \sin^2C - \sin^2B

    sin(B+A)sin(BA)=sin(C+B)sin(CB)\Rightarrow \sin(B + A)\sin(B - A) = \sin(C + B)\sin(C - B)

    sinCsin(BA)=sinAsin(CB)\Rightarrow \sin C\sin(B - A) = \sin A\sin(C - B)

    sinAcosBcosBsinAsinAsinB=sinBcosCsinCcosBsinBsinC\Rightarrow \frac{\sin A\cos B - \cos B\sin A}{\sin A\sin B} = \frac{\sin B\cos C - \sin C\cos B}{\sin B\sin C}

    cotBcotA=cotCcotB\Rightarrow \cot B - \cot A = \cot C - \cot B

    cotA,cotB,cotC\therefore \cot A, \cot B, \cot C are in A.P.

  17. Since A,B,CA, B, C are in A.P. 2B=A+CA+B+C=3B=180B=60\Rightarrow 2B = A + C \Rightarrow A + B + C = 3B = 180^\circ \Rightarrow B = 60^\circ

    Given, 2b2=3c22b^2 = 3c^2

    2.sin2B=3.sin2CsinC=±122.\sin^2B = 3.\sin^2C \Rightarrow \sin C = \pm\frac{1}{\sqrt{2}}

    sinC12\sin C\neq -\frac{1}{\sqrt{2}} because C<120C < 120^\circ

    sinC=12C=45\sin C = \frac{1}{\sqrt{2}} \Rightarrow C = 45^\circ

    A=75\Rightarrow A = 75^\circ

  18. Given, tanA2,tanB2,tanC2\tan\frac{A}{2}, \tan\frac{B}{2}, \tan\frac{C}{2} are in H.P.

    cotA2,cotB2,cotC2\Rightarrow \cot \frac{A}{2}, \cot\frac{B}{2}, \cot\frac{C}{2} are in A.P.

    cotB2cotA2=cotC2cotB2\cot\frac{B}{2} - \cot\frac{A}{2} = \cot\frac{C}{2}- \cot\frac{B}{2}

    s(sb)s(sa)Δ=s(sc)s(sb)Δ\frac{s(s - b) - s(s - a)}{\Delta} = \frac{s(s - c) - s(s - b)}{\Delta}

    ab=bca - b = b - c

    a,b,ca, b, c are in A.P.

  19. Given, sinAsinC=sin(AB)sin(BC)\frac{\sin A}{\sin C} = \frac{\sin(A - B)}{\sin(B - C)}

    sinAsinC=sinAcosBsinBcosAsinBcosCsinCcosB\frac{\sin A}{\sin C} = \frac{\sin A\cos B - \sin B \cos A}{\sin B\cos C - \sin C\cos B}

    sinAsinCcosC+sinBsinCcosA=2sinAsinCcosB\sin A\sin C\cos C + \sin B\sin C\cos A = 2\sin A\sin C\cos B

    sinBsin(A+C)=2sinAsinCcosB\sin B\sin(A + C) = 2\sin A\sin C\cos B

    sin2B=2sinAsinCcosB\sin^2B = 2\sin A\sin C\cos B

    cosB=b22ac=a2+c2b22ac\cos B = \frac{b^2}{2ac} = \frac{a^2 + c^2 - b^2}{2ac}

    c2+a2=2b2\Rightarrow c^2 + a^2 = 2b^2

    Thus, a2,b2,c2a^2, b^2, c^2 are in A.P.

  20. Given, 2sinB=sinA+sinC2\sin B = \sin A + \sin C

    4sinB2cosB2=2sinA+C2cosAC2=2cosB2cosAC24\sin\frac{B}{2}\cos\frac{B}{2} = 2\sin\frac{A + C}{2}\cos\frac{A - C}{2} = 2\cos\frac{B}{2}\cos\frac{A - C}{2}

    2sinB2=3cosA+C2=cosAC22\sin\frac{B}{2} = 3\cos\frac{A + C}{2} = \cos\frac{A - C}{2}

    3sinA2sinC2=cosA2cosC23\sin\frac{A}{2}\sin\frac{C}{2} = \cos\frac{A}{2}\cos\frac{C}{2}

    3tanA2tanC2=13\tan\frac{A}{2}\tan\frac{C}{2} = 1

  21. Given, a2,b2,c2a^2, b^2, c^2 are in A.P.

    b2a2=c2b2b^2 - a^2 = c^2 - b^2

    sin2Bsin2A=sin2Csin2B\sin^2B - \sin^2A = \sin^2C - \sin^2B

    sin(A+B)sin(AB)=sin(B+C)sin(BC)\sin(A + B)\sin(A - B) = \sin(B + C)\sin(B - C)

    sinCsin(AB)=sinAsin(BC)\sin C\sin(A - B) = \sin A\sin(B - C)

    cosBcotAsinB=sinBcotCcosB\cos B -\cot A\sin B = \sin B\cot C - \cos B

    2cosB=sinB(cotA+cotC)2\cos B = \sin B(\cot A + \cot C)

    2cotB=cotA+cotC2\cot B = \cot A + \cot C

    cotA,cotB,cotC\therefore \cot A, \cot B, \cot C are in A.P.

    tanA,tanB,tanC\therefore \tan A,\tan B, \tan C are in H.P.

  22. We have proven in previous problem that cotA,cotB,cotC\therefore \cot A, \cot B, \cot C are in A.P.

  23. Since A,B,CA, B, C are in A.P. 2B=A+CA+B+C=3B=180B=60\Rightarrow 2B = A + C \Rightarrow A + B + C = 3B = 180^\circ \Rightarrow B = 60^\circ

    b:c=3:2sinC=32.23=12b:c = \sqrt{3}:\sqrt{2} \Rightarrow \sin C = \frac{\sqrt{3}}{2}.\sqrt{\frac{2}{3}} = \frac{1}{\sqrt{2}}

    C=45A=75\Rightarrow C = 45^\circ \Rightarrow A = 75^\circ

  24. Let the sides are a,b,ca, b, c then 2b=a+c.2b = a + c. Also, let aa to be greatest and cc to be smallest side.

    Then, A=90+CA = 90 + C then 90+C+B+C=180B=902C90 + C + B + C = 180 \Rightarrow B = 90 -2C

    asin(90+C)=bsin(902C)=csinC=2R\frac{a}{\sin(90 + C)} = \frac{b}{\sin(90 - 2C)} = \frac{c}{\sin C} = 2R

    4Rcos2C=2RcosC+2RsinC4R\cos2C = 2R\cos C + 2R\sin C

    2cos2C=cosC+sinC2\cos 2C = \cos C + \sin C

    Squaring, we get

    4(1sin22C)=1+sin2Csin2C=344(1 - \sin^22C) = 1 + \sin 2C \Rightarrow \sin2C = \frac{3}{4} when 1+sin2C01 + \sin 2C \neq 0

    When 1+sin2C=0C=3π41 + \sin 2C = 0 \Rightarrow C = \frac{3\pi}{4} which is not possible.

    sin2C=34cos2C=74\because \sin 2C = \frac{3}{4} \Rightarrow \cos 2C = \frac{\sqrt{7}}{4}

    Now sinC\sin C and cosC\cos C can be found and ratio can be evaluated.

  25. a,b,c\because a, b, c are in A.P. 2b=a+ca=2bc2b = a + c \Rightarrow a = 2b - c

    cosA=b2+c2a22bc=b2+c24b2c2+4bc2bc\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{b^2 + c^2 -4b^2 -c^2 +4bc}{2bc}

    =4bc3b22bc=4c3b2c= \frac{4bc - 3b^2}{2bc} =\frac{4c - 3b}{2c}

  26. The diagram is given below:

    Problem 76

    Let AB=2,AD=5,BC=3AB = 2, AD = 5, BC = 3 annd CD=xCD=x

    Since it is cyclic quadrilateral C=120\angle C = 120^\circ

    Applying cosine rule in ΔABD,\Delta ABD, we have

    cos60=AB2+AD2BD22.AB.ADBD2=19\cos 60^\circ = \frac{AB^2 + AD^2 - BD^2}{2.AB.AD} \Rightarrow BD^2 = 19

    Applying cosine rule in ΔBCD,\Delta BCD, we have

    cos120=BC2+CD2BD22.BC.BDx2+3x10=0\cos 120^\circ = \frac{BC^2 + CD^2 - BD^2}{2.BC.BD} \Rightarrow x^2 + 3x -10 = 0

    x=5,2x = -5, 2 but xx cannot be -ve. x=2\therefore x = 2

  27. Given (a+b+c)(b+ca)=3bc(a + b + c)(b + c - a) = 3bc

    b2+c2a2+2bc=3bcb^2 + c^2 - a^2 + 2bc = 3bc

    b2+c2a22bc=12\frac{b^2 + c^2 - a^2}{2bc} = \frac{1}{2}

    cosA=cos60\cos A = \cos 60^\circ

    A=60A = 60^\circ

  28. Since ADAD is the median

    AB2+AC2=2BD2+2AD2\therefore AB^2 + AC^2 = 2BD^2 + 2AD^2

    b2+c2=a24+2AD2\Rightarrow b^2 + c^2 = \frac{a^2}{4} + 2AD^2

    4AD2=b2+c2+(b2+c2a2)4AD^2 = b^2 + c^2 + (b^2 + c^2 - a^2)

    cosA=12=b2+c2a22bc\cos A = \frac{1}{2} = \frac{b^2 + c^2 - a^2}{2bc}

    4AD2=b2+c2+bc\Rightarrow 4AD^2 = b^2 + c^2 + bc

  29. The diagram is given below:

    Problem 79

    Since ADAD is the median

    AB2+AC2=2BD2+2AD2\therefore AB^2 + AC^2 = 2BD^2 + 2AD^2

    AD2=2b2+2c2a24\Rightarrow AD^2 = \frac{2b^2 + 2c^2 - a^2}{4}

    AO=23AD=23.122b2+2c2a2AO = \frac{2}{3}AD = \frac{2}{3}.\frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}

    Similalry BO=132c2+2a2b2BO = \frac{1}{3}\sqrt{2c^2 + 2a^2 - b^2}

    AOB=90\because \angle AOB = 90^\circ

    AO2+BO2=AB2\therefore AO^2 + BO^2 = AB^2

    a2+b2=5c2\Rightarrow a^2 + b^2 = 5c^2

  30. Given, tanA1=tanB2=tanC3=k\frac{\tan A}{1} = \frac{\tan B}{2} = \frac{\tan C}{3} = k

    Since A,B,CA, B, C are the angles of a triangle

    tanA+tanB+tanC=tanAtanBtanC\therefore \tan A + \tan B + \tan C = \tan A\tan B\tan C

    k+2k+3k=k.2k.3kk=1k + 2k + 3k = k.2k.3k \Rightarrow k = 1 as if k=1k = -1 sum of angles will be greater than 180.180^\circ.

    tanA=1sinA=12\tan A = 1 \Rightarrow \sin A = \frac{1}{\sqrt{2}}

    tanA=2sinA=25\tan A = 2 \Rightarrow \sin A = \frac{2}{\sqrt{5}}

    tanA=3sinA=310\tan A = 3 \Rightarrow \sin A = \frac{3}{\sqrt{10}}

    asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

    2a=5b2=10c3\sqrt{2}a = \frac{\sqrt{5}b}{2} = \frac{\sqrt{10}c}{3}

    62a=35b=210c6\sqrt{2}a = 3\sqrt{5}b = 2\sqrt{10}c

  31. For a triangle sides are positive i.e. a>0,b>0,c>0a > 0, b > 0, c >0 where a,b,ca,b,c are the sides.

    2x+1>0x>122x + 1 > 0 \Rightarrow x > -\frac{1}{2}

    x21>0x>1x^2 - 1>0 \Rightarrow x > 1 because side cannot be negative.

    x2+x+1>0 x>1x^2 + x + 1 > 0~\forall x>1

    ab=x(x1)>0a>ba - b = x(x - 1) > 0 \Rightarrow a > b

    ac=x+2>0a>ca - c = x + 2 > 0 \Rightarrow a > c

    Hence aa is the greatest side.

    cosA=b2+c2a22bc=(2x+1)2+(x21)2(x2+x+1)2(2x+1)(x21)\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{(2x + 1)^2 + (x^2 - 1)^2 - (x^2 + x + 1)}{2(2x + 1)(x^2 - 1)}

    =12= -\frac{1}{2}

    A=120\Rightarrow A = 120^\circ

  32. Let the sides be x,x+1,x+2x, x+1, x+2 where x>0x > 0 and is a natural number. Let the smallest angle be θ\theta

    C=θA=2θ\angle C = \theta \therefore \angle A = 2\theta

    Applying sine law

    xsinθ=x+1sin(π3θ)=x+2sin2θ\frac{x}{\sin\theta} = \frac{x + 1}{\sin(\pi - 3\theta)} = \frac{x + 2}{\sin2\theta}

    xsinθ=x+2sin2θ2cosθ=x+2x\Rightarrow \frac{x}{\sin\theta} = \frac{x + 2}{\sin2\theta} \Rightarrow 2\cos\theta = \frac{x + 2}{x}

    xsinθ=x+1sin3θ=x+13sinθ4sin2θ\Rightarrow \frac{x}{\sin\theta} = \frac{x + 1}{\sin3\theta} = \frac{x + 1}{3\sin\theta - 4\sin^2\theta}

    34sin2θ=x+1x\Rightarrow 3 - 4\sin^2\theta = \frac{x + 1}{x}

    4cos2θ=2x+1x=(x+2)2x2\Rightarrow 4\cos^2\theta = \frac{2x + 1}{x} = \frac{(x + 2)^2}{x^2}

    x23x4=0\Rightarrow x^2 - 3x - 4 = 0

    x=4,1x = 4, -1 but 1-1 is not a natural number so x=4.x = 4. Hence sides are 4,5,6.4,5,6.

  33. Given, a=6a = 6 cm, Δ=12\Delta = 12 sq. cm. and BC=60B - C = 60^\circ

    Δ=12absinC=12a.ksinBsinC\Delta = \frac{1}{2}ab\sin C = \frac{1}{2}a.k\sin B\sin C

    =12.a.asinAsinBsinC= \frac{1}{2}.a.\frac{a}{\sin A}\sin B\sin C

    Δ=12a2sinBsinC=18sinBsinCsinA\Delta = \frac{1}{2}a^2\sin B\sin C = \frac{18\sin B\sin C}{\sin A}

    23=2sinBsinC2sinA=cos(BC)cos(B+C)2sinA\Rightarrow \frac{2}{3} = \frac{2\sin B\sin C}{2\sin A} = \frac{\cos(B - C) - \cos(B + C)}{2\sin A}

    23=cos60cos(πA)2sinA\Rightarrow \frac{2}{3} = \frac{\cos60^\circ - \cos(\pi - A)}{2\sin A}

    8sinA6cosA=3\Rightarrow 8\sin A - 6\cos A = 3

  34. Given, cosθ=ab+c1+cosθ=a+b+cb+c\cos\theta = \frac{a}{b + c} \Rightarrow 1 + \cos\theta = \frac{a + b + c}{b + c}

    2cos2θ2=a+b+cb+c\Rightarrow 2\cos^2\frac{\theta}{2} = \frac{a + b + c}{b + c}

    sec2θ2=2(b+c)a+b+c\sec^2\frac{\theta}{2} = \frac{2(b + c)}{a + b + c}

    1+tan2θ2=2(b+c)a+b+c1 + \tan^2\frac{\theta}{2} = \frac{2(b + c)}{a + b + c}

    Similarly, 1+tan2ϕ2=2(c+a)a+b+c1 + \tan^2\frac{\phi}{2} = \frac{2(c + a)}{a + b + c}

    and 1+tan2ψ2=2(a+b)a+b+c1 + \tan^2\frac{\psi}{2} = \frac{2(a + b)}{a + b + c}

    Adding, we get 3+tan2θ2+tan2ϕ2+tan2ψ2=4(a+b+c)a+b+c3 + \tan^2\frac{\theta}{2} + \tan^2\frac{\phi}{2} + \tan^2\frac{\psi}{2} = \frac{4(a + b + c)}{a + b + c}

    tan2θ2+tan2ϕ2+tan2ψ2=1\Rightarrow \tan^2\frac{\theta}{2} + \tan^2\frac{\phi}{2} + \tan^2\frac{\psi}{2} = 1

  35. Since CC is the angle of a triangle, sinC1\sin C\leq 1

    cosAcosB+sinAsinBcosAcosB+sinAsinBsinC\therefore \cos A\cos B + \sin A\sin B\geq \cos A\cos B + \sin A\sin B\sin C

    cos(AB)1\Rightarrow \cos(A - B)\geq 1

    But cos(AB)cos(A - B) cannot be greater than 1.cos(AB)=1A=B1. \therefore \cos(A - B) = 1\Rightarrow A = B

    Now, cosAcosB+sinAsinBsinC=1\cos A\cos B + \sin A\sin B\sin C = 1

    cos2A+sin2AsinC=1\Rightarrow \cos^2A + \sin^2A\sin C = 1

    sinC=1C=90A=B=45\Rightarrow \sin C= 1 \Rightarrow C=90^\circ\Rightarrow A = B = 45^\circ

    a:b:c=sinA:sinB:sinC=1:1:2\Rightarrow a:b:c = \sin A:\sin B: \sin C = 1:1:\sqrt{2}

  36. From the question, sinAsinBsinC=p\sin A\sin B\sin C = p and cosAcosBcosC=q\cos A\cos B\cos C = q

    tanAtanBtanC=pq\therefore \tan A\tan B\tan C = \frac{p}{q}

    Since we are dealing with a triangle tanA+tanB+tanC=tanAtanBtanC\therefore \tan A + \tan B + \tan C = \tan A\tan B\tan C

    tanA+tanB+tanC=p1\Rightarrow \tan A + \tan B + \tan C = \frac{p}{1}

    Now, tanAtanB+tanBtanC+tanCtanA=sinAsinBcosC+sinBsinCcosA+sinAsinCcosBcosAcosBcosC\tan A\tan B + \tan B\tan C + \tan C\tan A = \frac{\sin A\sin B\cos C + \sin B\sin C\cos A + \sin A\sin C\cos B}{\cos A\cos B\cos C}

    [ We know that in a triangle 2sinAsinBcosC=sin2A+sin2Bsin2C2\sin A\sin B\cos C = \sin^2A + \sin^2B - \sin^2C ]

    12q[(sin2A+sin2Bsin2C)+(sin2B+sin2Csin2A)+(sin2C+sin2Asin2B)]\Rightarrow \frac{1}{2q}[(\sin^2A + \sin^2B - \sin^2C) + (\sin^2B + \sin^2C - \sin^2A) + (\sin^2C + \sin^2A - \sin^2B)]

    =12q[sin2+sin2B+sin2C]= \frac{1}{2q}[\sin^2 + \sin^2B + \sin^2C]

    =12q[(1cos2A)+(1cos2B)+(1cos2C)2]= \frac{1}{2q}\left[\frac{(1 - \cos2A) + (1 - \cos2B) + (1 - \cos2C)}{2}\right]

    =14q[4+4cosAcosBcosC]=1+qq= \frac{1}{4q}[4 + 4\cos A\cos B\cos C] = \frac{1 + q}{q}

    Thus, we see that tanA,tanB,tanC\tan A, \tan B, \tan C are roots of the given equation.

  37. Given, sin3θ=sin(Aθ)sin(Bθ)sin(Cθ)\sin^3\theta = \sin(A - \theta)\sin(B - \theta)\sin(C - \theta)

    4sin3θ=2sin(Aθ)[2sin(Bθ)sin(Cθ)]4\sin^3\theta = 2\sin(A - \theta)[2\sin(B - \theta)\sin(C - \theta)]

    =2sin(Aθ)[cos(BC)cos(B+C2θ)]= 2\sin(A - \theta)[\cos(B - C) - \cos(B + C - 2\theta)]

    =2sin(Aθ)cos(BC)2sin(Aθ)cos(B+C2θ)= 2\sin(A - \theta)\cos(B - C) -2\sin(A - \theta)\cos(B + C - 2\theta)

    =sin(A+BCθ)+sin(A+CθB)sin(A+B+C3θ)+sin(π2Bθ)= \sin(A + B - C - \theta) + \sin(A + C - \theta - B) - \sin(A + B + C - 3\theta) + \sin(\pi - 2B - \theta)

    sin3θ+4sin3θ=sin(2A+θ)+sin(2B+θ)+sin(2C+θ)\sin 3\theta + 4\sin^3\theta = \sin(2A + \theta) + \sin(2B + \theta) + \sin(2C + \theta)

    3sinθ=(sin2A+sin2B+sin2C)cosθ+(cos2A+cos2B+cos2C)sinθ3\sin\theta = (\sin2A + \sin2B + \sin2C)\cos\theta + (\cos2A + \cos2B + \cos2C)\sin\theta

    [ sin2A+sin2B+sin2C=4sinAsinBsinC\because \sin2A + \sin2B + \sin 2C = 4\sin A\sin B\sin C when A+B+C=πA + B + C = \pi ]

    (1cos2A)+(1cos2B)+(1cos2C)sinθ=4sinAsinBsinC.cosθ(1 - \cos 2A) + (1 - \cos 2B) + (1 - \cos 2C)\sin\theta = 4\sin A\sin B\sin C.\cos\theta

    2[(sin2A+sin2B+sin2C)sinθ]=4sinAsinBsinCcosθ2[(\sin^2A + \sin^2B + \sin^2C)\sin\theta] = 4\sin A\sin B\sin C\cos\theta

    2sinθ[(sin2A+sin2Bsin2C)+(sin2B+sin2Csin2A)+(sin2C+sin2Asin2B)]=4sinAsinBsinCcosθ2\sin\theta[(\sin^2A + \sin^2B - \sin^2C) + (\sin^2B + \sin^2C - \sin^2A) + (\sin^2C + \sin^2A - \sin^2B)] = 4\sin A\sin B\sin C\cos\theta

    [ sin2+sin2Bsin2C=2sinAsinBcosC\because \sin^2 + \sin^2B - \sin^2C = 2\sin A\sin B\cos C ]

    cotθ=cotA+cotB+cotC\Rightarrow \cot\theta = \cot A + \cot B + \cot C

  38. From question bc=rb=cr\frac{b}{c} = r \therefore b = cr

    Let ADBCAD\perp BC and let AD=hAD = h

    We have to prove that har1r2h\leq \frac{ar}{1 - r^2}

    ΔABC=12c.cr.sinA=12ah\Delta ABC = \frac{1}{2}c.cr.\sin A = \frac{1}{2}ah

    h=c2rsinAah = \frac{c^2r\sin A}{a}

    cosA=c2+c2r2a22.c.cr\cos A = \frac{c^2 + c^2r^2 - a^2}{2.c.cr}

    c2=a21+r22rcosAc^2 = \frac{a^2}{1 + r^2 - 2r\cos A}

    h=a2rsinCa(1+r22rcosa)=arsinA1+r22rcosA\Rightarrow h = \frac{a^2r\sin C}{a(1 + r^2 - 2r\cos a)} = \frac{ar\sin A}{1 + r^2 - 2r\cos A}

    =ar.2tanA21+tan2A21+r22r1tan2A21+tan2A2= \frac{ar.\frac{2\tan\frac{A}{2}}{1 + \tan^2\frac{A}{2}}}{1 + r^2 - 2r\frac{1 - \tan^2\frac{A}{2}}{1 + \tan^2\frac{A}{2}}}

    (1+r2)tan2A22arhtanA2+(1r)2=0\Rightarrow (1 + r^2)\tan^2\frac{A}{2} -\frac{2ar}{h}\tan\frac{A}{2} + (1 - r)^2 = 0

    This is a quadratic equation in tanA2\tan\frac{A}{2} and since it will be read D0D \geq 0

    4a2r2h24(1+r)2(1r)20\Rightarrow \frac{4a^2r^2}{h^2} - 4(1 + r)^2(1 - r)^2\geq 0

    har1r2h \leq \frac{ar}{1 - r^2}

  39. Given b.c=k2,b.c = k^2, now

    cosA=b2+c2a22bc2k2cosA=b2+k4b2a2\cos A = \frac{b^2 + c^2 - a^2}{2bc} \Rightarrow 2k^2\cos A = b^2 + \frac{k^4}{b^2} - a^2

    b4(a2+2k2cosA)b2+k4=0b^4 - (a^2 + 2k^2\cos A)b^2 + k^4 = 0 which is a quadratic equation in b2.b^2.

    The triangle will not exists if discriminant is less than zero for above equation because then bb will become a complex number.

    (a2+2k2cosA)24k4<0\Rightarrow (a^2 + 2k^2\cos A)^2 - 4k^4 < 0

    [a2+2k2(1+cosA)][a22k2(1cosA)]<0\Rightarrow [a^2 + 2k^2(1 + \cos A)][a^2 - 2k^2(1 - \cos A)] < 0

    (a2+4k2cos2A2)(a24k2sin2A3)<0\Rightarrow \left(a^2 + 4k^2\cos^2\frac{A}{2}\right)\left(a^2 - 4k^2\sin^2\frac{A}{3}\right) < 0

    a24k2sin2A2,0[a2+2k2cos2A2>0]\Rightarrow a^2 - 4k^2\sin^2\frac{A}{2} , 0 \left[\because a^2 + 2k^2\cos^2\frac{A}{2} > 0\right]

    (a+2ksinA2)(a2ksinA2)<0\Rightarrow \left(a + 2k\sin\frac{A}{2}\right)\left(a - 2k\sin\frac{A}{2}\right) < 0

    a2ksinA2<0[]a+2ksinA2>0]\Rightarrow a - 2k\sin\frac{A}{2} < 0 \left[\because] a + 2k\sin\frac{A}{2} > 0\right]

    a<2ksinA2\Rightarrow a < 2k\sin\frac{A}{2}

  40. The diagram is given below:

    Problem 90

    The diagram is a top view. Let OO be the top point and OO' the center of ring which is 1212 cm below OO in the diagram(not shown).

    In triangle OOA,AO=5OO'A, AO' = 5 cm, OO=12OO' = 12 cm

    AO=122+52=13AO = \sqrt{12^2 + 5^2} = 13 cm

    Now sides of a regular hexagon are equal to the circumscribing circle. AB=5AB= 5 cm.

    cosAOB=132+132522.13.13=313338\cos AOB = \frac{13^2 + 13^2 - 5^2}{2.13.13} = \frac{313}{338}

  41. Given, 2b=3a2b = 3a and tan2A2=35\tan^2\frac{A}{2}= \frac{3}{5}

    cosA=11+tan2A2=11+35=58\cos A = \frac{1}{\sqrt{1 + \tan^2\frac{A}{2}}} = \frac{1}{\sqrt{1 + \frac{3}{5}}} = \sqrt{\frac{5}{8}}

    cosA=58=b2+c2a22bc\cos A = \sqrt{\frac{5}{8}} = \frac{b^2 + c^2 - a^2}{2bc}

    =b2+c24b292bc= \frac{b^2 + c^2 - \frac{4b^2}{9}}{2bc}

    8(5b2+9c2)9=25bc\Rightarrow \frac{\sqrt{8}(5b^2 + 9c^2)}{9} = 2\sqrt{5}bc

    98c2185bc+58b2=0\Rightarrow 9\sqrt{8}c^2 - 18\sqrt{5}bc + 5\sqrt{8}b^2 = 0

    c=8568,4568\Rightarrow c = \frac{8\sqrt{5}}{6\sqrt{8}}, \frac{4\sqrt{5}}{6\sqrt{8}}

    Thus, one value is double of the other.

  42. Let the angles are k,2k,7kk, 2k,7k degrees. Then k+2k+7k=180k=18k + 2k + 7k = 180^\circ \Rightarrow k = 18^\circ

    So greatest angle is 126126^\circ and smallest is 18.18^\circ.

    Ratio of greatest to least side is given by sin126;;sin18\sin126^\circ;;\sin18^\circ

    =cos36:sin18=5+1:51= \cos 36^\circ:\sin18^\circ = \sqrt{5} + 1:\sqrt{5} - 1

  43. Let AF=f,BG=g,CH=hAF = f, BG = g, CH = h

    Area of ABC=\triangle ABC = Area of ABF\triangle ABF + Area of ACF\triangle ACF

    12bcsinA=12.2sinA2cosA2=12cfsinA2+12bfsinA2\frac{1}{2}bc\sin A = \frac{1}{2}.2\sin\frac{A}{2}\cos\frac{A}{2} = \frac{1}{2cf}\sin\frac{A}{2} + \frac{1}{2}bf\sin\frac{A}{2}

    2bccosA2=(b+c)f\Rightarrow 2bc\cos\frac{A}{2} = (b + c)f

    1fcosA2=12(1b+1c)\frac{1}{f}\cos\frac{A}{2} = \frac{1}{2}\left(\frac{1}{b} + \frac{1}{c}\right)

    Similarly, 1gcosB2=12(1a+1c)\frac{1}{g}\cos\frac{B}{2} = \frac{1}{2}\left(\frac{1}{a} + \frac{1}{c}\right)

    and, 1hcosC2=12(1a+1b)\frac{1}{h}\cos\frac{C}{2} = \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right)

    Adding these three we obtain desired result.

  44. Since BD=DE=ECBD = DE = EC each will be equal to 53.\frac{5}{3}. Clearly the triangle is right angled because 32+52=523^2 + 5^2 = 5^2

    cosC=45\cos C = \frac{4}{5}

    In ACE,cosC=CE2+42AE22.CE.4=259+16AE22.53.4\triangle ACE, \cos C = \frac{CE^2 + 4^2 - AE^2}{2.CE.4} = \frac{\frac{25}{9} + 16 - AE^2}{2.\frac{5}{3}.4}

    1699AE29.340=45\Rightarrow \frac{169 - 9AE^2}{9}.\frac{3}{40} = \frac{4}{5}

    AE2=739\Rightarrow AE^2 = \frac{73}{9}

    cosθ=AE2+AC2CE22.AE.AC=873\cos\theta = \frac{AE^2 + AC^2 - CE^2}{2.AE.AC} = \frac{8}{\sqrt{73}}

    tanθ=sec2θ1=73641=38\tan\theta = \sqrt{sec^2\theta - 1} = \sqrt{\frac{73}{64} - 1} = \frac{3}{8}

  45. Let OO be the centroid i.e. point of intersection of medians.

    From geometry, we know that area of ABC=3×\triangle ABC = 3\times area of AOC\triangle AOC

    We also know that centroid divides median in the ratio of 2:12:1 i.e. AO=103AO = \frac{10}{3}

    Applying sine rule in AOC\triangle AOC

    OCsinπ8=AOsinπ4\frac{OC}{\sin\frac{\pi}{8}} = \frac{AO}{\sin\frac{\pi}{4}}

    OC=103sinπ8sinπ4OC = \frac{10}{3}\frac{\sin\frac{\pi}{8}}{\sin\frac{\pi}{4}}

    Area of AOC=12AO.OCsinAOC\triangle AOC = \frac{1}{2}AO.OC\sin AOC

    =12103.103.sinπ8sinπ4sin(π2+π8)= \frac{1}{2}\frac{10}{3}.\frac{10}{3}.\frac{\sin\frac{\pi}{8}}{\sin\frac{\pi}{4}}\sin\left(\frac{\pi}{2} + \frac{\pi}{8}\right)

    =259= \frac{25}{9}

    ΔABC=759.\therefore \Delta ABC = \frac{75}{9}.

  46. Let sides are a,b,ca, b, c then a=7=49a = 7 = \sqrt{49} cm, b=43=48b = 4\sqrt{3} = \sqrt{48} cm and c=13c = \sqrt{13} cm.

    Clearly, cc is smallest and thus CC will be smallest.

    cosC=48+49132.7.43=32\cos C = \frac{48 + 49 - 13}{2.7.4\sqrt{3}} = \frac{3}{2}

    C=30\Rightarrow C = 30^\circ

  47. Let the triangle be ABCABC having right angle at C.C. Let DD be the mid-point of AC.AC.

    Given that triangle is isoceles so AC=BCAC = BC i.e. DC=12AC=12BCDC = \frac{1}{2}AC = \frac{1}{2}BC

    Also, CAB=BDA=45\angle CAB = \angle BDA = 45^\circ

    Let DBC=θ\angle DBC = \theta and DBA=ϕ\angle DBA = \phi

    tanϕ=DCBC=12\tan\phi = \frac{DC}{BC}= \frac{1}{2}

    tanϕ=tan(45θ)=1tanθ1+tanθ\tan\phi = tan(45^\circ - \theta) = \frac{1 - \tan\theta}{1 + \tan\theta}

    tanϕ=13\Rightarrow \tan\phi = \frac{1}{3}

    cotθ=2,cotϕ=3\therefore \cot\theta = 2, \cot\phi = 3

  48. From the given ratios we have,

    a+b(1+m2)(1+n2)=ab(1m2)(1n2)=c(1m2)(1+n2)\frac{a + b}{(1 + m^2)(1 + n^2)}= \frac{a - b}{(1 - m^2)(1 - n^2)} = \frac{c}{(1 - m^2)(1 + n^2)}

    a+bc=1+m21m2,abc=1n21+n2\Rightarrow \frac{a + b }{c} = \frac{1 + m^2}{1 - m^2}, \frac{a - b}{c} = \frac{1 - n^2}{1 + n^2}

    cosAB2cosA+B2=1+m21m2,sinAB2sinA+B2=1n21+n2\Rightarrow \frac{\cos\frac{A - B}{2}}{\cos\frac{A + B}{2}} = \frac{1 + m^2}{1 - m^2}, \frac{\sin\frac{A - B}{2}}{\sin\frac{A + B}{2}} = \frac{1 - n^2}{1 + n^2}

    By componendo and dvidendo, we have

    tanA2tanB2=m2,cotA2tanB2=n2\tan\frac{A}{2}\tan\frac{B}{2} = m^2, \cot\frac{A}{2}\tan\frac{B}{2} = n^2

    tan2A2=m2n2,tan2B2=m2n2\Rightarrow \tan^2\frac{A}{2} = \frac{m^2}{n^2}, \tan^2\frac{B}{2} = m^2n^2

    A=2tan1mn,B=2tan1mn\Rightarrow A = 2\tan^{-1}\frac{m}{n}, B = 2\tan^{-1}mn

    Δ=12bcsinA=12bc2tanA21+tan2A2\Delta = \frac{1}{2}bc\sin A = \frac{1}{2}bc\frac{2\tan\frac{A}{2}}{1 + \tan^2\frac{A}{2}}

    =mnbcm2+n2= \frac{mnbc}{m^2 + n^2}

  49. Since a,b,ca,b,c are roots of the equation x3px2+qxr=0x^3 - px^2 + qx - r = 0 therefore we have

    a+b+c=p=2sa + b + c = p = 2s where ss is perimeter.

    ab+bc+ca=qab + bc + ca = q and abc=rabc = r

    Δ2=s(sa)(sb)(sc)\Delta^2 = s(s- a)(s - b)(s - c)

    =p2(p2a)(p2b)(p2c)= \frac{p}{2}\left(\frac{p}{2} -a\right)\left(\frac{p}{2} - b\right)\left(\frac{p}{2} - c\right)

    Substituting the values of we obtain the desired result.

  50. Let the third side be aa cm. Applying cosine rule,

    6=a2+422.a.4cos306 = a^2 + 4^2 - 2.a.4\cos30^\circ

    a243a+10=0a^2 - 4\sqrt{3}a + 10 = 0

    a=43±48402=23±2a = \frac{4\sqrt{3}\pm\sqrt{48 - 40}}{2} = 2\sqrt{3} \pm \sqrt{2}

    Both roots are positive, so two such triangles are possible.