14. Trigonometrical Identities#

In this chapter we will have only problems and we will use the theory we have learned till now.

  1. If A+B+C=π,A + B + C = \pi, prove that sin2A+sin2Bsin2C=2sinAsinBsinC\sin^2A + \sin^2B - \sin^2C = 2\sin A\sin B\sin C

  2. If A+B+C=180,A + B + C = 180^\circ, prove that sin2A2+sin2B2+sin2C2=12sinA2sinB2sinC2\sin^2\frac{A}{2} + \sin^2\frac{B}{2} + \sin^2\frac{C}{2} = 1 - 2\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}

  3. Show that sin2A+sin2B+2sinAsinBcos(A+B)=sin2(A+B)\sin^2A + \sin^2B + 2\sin A\sin B\cos(A + B) = \sin^2(A + B)

  4. If A+B+C=180,A + B + C = 180^\circ, prove that cos2A+cos2B+cos2C+2cosAcosBcosC=1\cos^2A + \cos^2B + \cos^2C + 2\cos A\cos B\cos C = 1

  5. If A+B+C=180,A + B + C = 180^\circ, prove that sin2A+sin2B+sin2C=2(1+cosAcosBcosC)\sin^2A + \sin^2B + \sin^2C = 2(1 + \cos A \cos B \cos C)

  6. If A+B+C=180,A + B + C = 180^\circ, prove that cos2A+cos2Bcos2C=12sinAsinBsinC\cos^2A + \cos^2B - \cos^2C = 1 - 2\sin A\sin B\sin C

  7. If A+B+C=180,A + B + C = 180^\circ, prove that cos2A2+cos2B2cos2C2=2cosA2cosB2sinC2\cos^2\frac{A}{2} + \cos^2\frac{B}{2} - \cos^2\frac{C}{2} = 2\cos\frac{A}{2}\cos\frac{B}{2}\sin\frac{C}{2}

  8. If A+B+C=180,A + B + C = 180^\circ, prove that cos2A2+cos2B2+cos2C2=2+2sinA2sinB2sinC2\cos^2\frac{A}{2} + \cos^2\frac{B}{2} + \cos^2\frac{C}{2} = 2 + 2\sin\frac{A}{2}\sin\frac{B}{2}\sin\frac{C}{2}

  9. If A+B+C=π2,A + B + C = \frac{\pi}{2}, prove that sin2A+sin2B+sin2C=12sinAsinBsinC\sin^2A + \sin^2B + \sin^2C = 1 - 2\sin A\sin B\sin C

  10. If A+B+C=π2,A + B + C = \frac{\pi}{2}, prove that cos2A+cos2B+cos2C=2+2sinAsinBsinC\cos^2A + \cos^2B + \cos^2C = 2 + 2\sin A\sin B\sin C

  11. If A+B+C=2π,A + B + C = 2\pi, prove that cos2A+cos2B+cos2C2cosAcosBcosC=1\cos^2A + \cos^2B + \cos^2C - 2\cos A\cos B\cos C = 1

  12. If A+B=C,A + B = C, prove that cos2A+cos2B+cos2C2cosAcosBcosC=1\cos^2A + \cos^2B + \cos^2C - 2\cos A\cos B\cos C = 1

  13. If A+B=π3,A + B = \frac{\pi}{3}, prove that cos2A+cos2BcosAcosB=34\cos^2A + \cos^2B - \cos A\cos B = \frac{3}{4}

  14. Show that cos2B+cos2(A+B)2cosAcosBcos(A+B)\cos^2B + \cos^2(A + B) - 2\cos A\cos B\cos(A + B) is independent of B.B.

  15. If A+B+C=πA + B + C = \pi and A+B=2C,A + B = 2C, prove that 4(sin2A+sin2BsinAsinB)=34(\sin^2A + \sin^2B - \sin A\sin B) = 3

  16. If A+B+C=2π,A + B + C = 2\pi, prove that cos2B+cos2Csin2A2cosAcosBcosC=0\cos^2B + \cos^2C - \sin^2A - 2\cos A\cos B\cos C = 0

  17. If A+B+C=0,A + B + C = 0, prove that cos2A+cos2B+cos2C=1+2cosAcosBcosC\cos^2A + \cos^2B + \cos^2C = 1 + 2\cos A\cos B\cos C

  18. Prove that cos2(BC)+cos2(CA)+cos2(AB)=1+2cos(BC)cos(CA)cos(AB)\cos^2(B - C) + \cos^2(C - A) + \cos^2(A - B) = 1 + 2\cos(B - C)\cos(C - A)\cos(A - B)

  19. If A+B+C=π,A + B + C = \pi, prove that sinAcosBcosC+sinBcosCcosA+sinCcosAcosB=sinAsinBsinC\sin A\cos B\cos C + \sin B\cos C\cos A + \sin C\cos A\cos B= \sin A\sin B\sin C

  20. If A+B+C=π,A + B + C = \pi, prove that tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C

  21. If A+B+C=π,A + B + C = \pi, prove that tanA2tanB2+tanB2tanC2+tanC2tanA2=1\tan\frac{A}{2}\tan\frac{B}{2} + \tan\frac{B}{2}\tan\frac{C}{2} + \tan\frac{C}{2}\tan\frac{A}{2} = 1

  22. If A+B+C=π,A + B + C = \pi, prove that tan(B+CA)+tan(C+AB)+tan(A+BC)=tan(B+CA)tan(C+AB)tan(A+BC)\tan(B + C - A) + \tan(C + A - B) + \tan(A + B - C) = \tan(B + C - A)\tan(C + A - B)\tan(A + B - C)

  23. If A+B+C=π,A + B + C = \pi, prove that cotBcotC+cotCcotA+cotAcotB=1\cot B\cot C + \cot C\cot A + \cot A\cot B = 1

  24. In a ABC,\triangle ABC, if cotA+cotB+cotC=3,\cot A + \cot B + \cot C = \sqrt{3}, prove that the triangle is equilateral.

  25. If A,B,C,DA, B, C, D are angles of a quadrilateral, prove that tanA+tanB+tanC+tanDcotA+cotB+cotC+cotD=tanAtanBtanCtanD\frac{\tan A + \tan B + \tan C + \tan D}{\cot A + \cot B + \cot C + \cot D} = \tan A\tan B\tan C\tan D

  26. If A+B+C=π2,A + B + C = \frac{\pi}{2}, show that cotA+cotB+cotC=cotAcotBcotC\cot A + \cot B + \cot C = \cot A\cot B\cot C

  27. If A+B+C=π2,A + B + C = \frac{\pi}{2}, show that tanAtanB+tanBtanC+tanCtanA=1\tan A\tan B + \tan B\tan C + \tan C\tan A = 1

  28. If A+B+C=π,A + B + C = \pi, prove that tan3A+tan3B+tan3C=tan3Atan3Btan3C\tan 3A + \tan 3B + \tan 3C = \tan 3A\tan 3B\tan 3C

  29. If A+B+C=π,A + B + C = \pi, prove that cotA2+cotB2+cotC2=cotA2cotB2cotC2\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2}\cot \frac{B}{2}\cot \frac{C}{2}

  30. If A+B+C=π,A + B + C = \pi, prove that cotA+cotBtanA+tanB+cotB+cotCtanB+tanC+cotC+cotAtanC+tanA=1\frac{\cot A + \cot B}{\tan A + \tan B} + \frac{\cot B + \cot C}{\tan B + \tan C} + \frac{\cot C + \cot A}{\tan C + \tan A} = 1

  31. Prove that tan(AB)+tan(BC)+tan(CA)=tan(AB)tan(BC)tan(CA)\tan(A - B) + \tan(B - C) + \tan(C - A) = \tan(A - B)\tan(B - C)\tan(C - A)

  32. If x+y+z=0,x + y + z = 0, show that cot(x+yz)cot(z+xy)+cot(x+yz)cot(y+zx)+cot(y+zx)cot(z+xy)=1\cot(x + y - z)\cot(z + x - y) + \cot(x + y - z)\cot(y + z - x) + \cot(y + z - x)\cot(z + x - y) = 1

  33. If A+B+C=nπ(nA + B + C = n\pi(n being zero or an integer ),), show that tanA+tanB+tanC=tanAtanBtanC\tan A + \tan B + \tan C = \tan A\tan B\tan C

  34. If A+B+C=π,A + B + C = \pi, prove that sin2A+sin2B+sin2C=4sinAsinBsinC\sin 2A + \sin 2B + \sin 2C = 4\sin A\sin B\sin C

  35. If A+B+C=π,A + B + C = \pi, prove that cosA+cosB+cosC1=4sinA2sinB2sinC2\cos A + \cos B + \cos C - 1 = 4\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}

  36. Prove that sin2A+sin2B+sin2CcosA+cosB+cosC1=8cosA2cosB2cosC2\frac{\sin 2A + \sin 2B + \sin 2C}{\cos A + \cos B + \cos C - 1} = 8\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}

  37. If A+B+C=π,A + B + C = \pi, prove that cosA2+cosB2+cosC2=4cosπA4cosπB4cosπC4\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} = 4\cos\frac{\pi - A}{4}\cos\frac{\pi - B}{4}\cos\frac{\pi - C}{4}

  38. If A+B+C=π,A + B + C = \pi, prove that sinA2+sinB2+sinC2=1+4sinB+C4sinC+A4sinA+B4\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} = 1 + 4\sin \frac{B + C}{4}\sin \frac{C + A}{4}\sin \frac{A + B}{4}

  39. If A+B+C=π,A + B + C = \pi, prove that sin2A2+sin2B2sin2C2=12cosA2cosB2cosC2\sin^2\frac{A}{2} + \sin^2\frac{B}{2} - \sin^2\frac{C}{2} = 1 - 2\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}

  40. Prove that 1+cos56+cos58cos66=4cos28cos29sin331 + \cos 56^\circ + \cos 58^\circ - \cos 66^\circ = 4\cos28^\circ\cos29^\circ\sin 33^\circ

  41. If A+B+C=π,A + B + C = \pi, prove that cos2A+cos2Bcos2C=14sinAsinBcosC\cos 2A + \cos 2B - \cos 2C = 1 - 4\sin A\sin B\cos C

  42. If A+B+C=π,A + B + C = \pi, prove that sin2A+sin2Bsin2C=4cosAcosBsinC\sin 2A + \sin 2B - \sin 2C = 4\cos A\cos B\sin C

  43. If A+B+C=π,A + B + C = \pi, prove that sinA+sinB+sinC=4cosA2cosB2cosC2\sin A + \sin B + \sin C = 4\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}

  44. If A+B+C=π,A + B + C = \pi, prove that cosA+cosBcosC=4cosA2cosB2sinC21\cos A + \cos B - \cos C = 4\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2} - 1

  45. If A+B+C=π,A + B + C = \pi, prove that sin(B+CA)+sin(C+AB)+sin(A+BC)=4sinAsinBsinC\sin(B + C - A) + \sin(C + A - B) + \sin(A + B - C) = 4\sin A\sin B\sin C

  46. If A+B+C=π,A + B + C = \pi, prove that cosAsinBsinC+cosBsinCsinA+cosCsinAsinB=2\frac{\cos A}{\sin B\sin C} + \frac{\cos B}{\sin C\sin A} + \frac{\cos C}{\sin A\sin B} = 2

  47. If A+B+C=π,A + B + C = \pi, prove that sin2A+sin2B+sin2CsinA+sinB+sinC=8sinA2 sinB2sinC2\frac{\sin 2A + \sin 2B + \sin 2C}{\sin A + \sin B + \sin C} = 8\sin \frac{A}{2}\ \sin \frac{B}{2}\sin \frac{C}{2}

  48. If x+y+z=π2,x + y + z = \frac{\pi}{2}, prove that cos(xyz)+cos(yzx)+cos(zxy)4cosxcosycosz=0\cos(x - y - z) + \cos(y - z - x) + \cos(z - x - y) - 4\cos x\cos y\cos z = 0

  49. Show that sin(xy)+sin(yz)+sin(zx)+4sinxy2sinyz2sinzx2=0\sin(x - y) + \sin(y - z) + \sin(z - x) + 4\sin\frac{x - y}{2}\sin\frac{y - z}{2}\sin \frac{z - x}{2} = 0

  50. If A+B+C=180,A + B + C = 180^\circ, prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sinBC2sinCA2sinAB2\sin(B + 2C) + \sin(C + 2A) + \sin(A + 2B) = 4\sin\frac{B - C}{2} \sin\frac{C - A}{2}\sin\frac{A - B}{2}

  51. If A+B+C=π,A + B + C = \pi, prove that sinB+C2+sinC+A2+sinA+B2=4cosπA4cosπB4cosπC4\sin\frac{B + C}{2} + \sin \frac{C + A}{2} + \sin \frac{A + B}{2} = 4\cos\frac{\pi - A}{4}\cos\frac{\pi - B}{4}\cos\frac{\pi - C}{4}

  52. If xy+yz+zx=1,xy + yz + zx = 1, prove that x1x2+y1y2+z1z2=4xyz(1x2)(1y2)(1z2)\frac{x}{1 - x^2} + \frac{y}{1 - y^2} + \frac{z}{1 - z^2} = \frac{4xyz}{(1 - x^2)(1 - y^2)(1 - z^2)}

  53. If x+y+z=xyz,x + y + z = xyz, show that 3xx313x2+3yy313y2+3zz313z2=3xx313x2.3yy313y2.3zz313z2\frac{3x - x^3}{1 - 3x^2} + \frac{3y - y^3}{1 - 3y^2} + \frac{3z - z^3}{1 - 3z^2} = \frac{3x - x^3}{1 - 3x^2}.\frac{3y - y^3}{1 - 3y^2}.\frac{3z - z^3}{1 - 3z^2}

  54. If x+y+z=xyz,x + y + z = xyz, prove that 2x1x2+2y1y2+2z1z2=2x1x2.2y1y2.2z1z2\frac{2x}{1 - x^2} + \frac{2y}{1 - y^2} + \frac{2z}{1 - z^2} = \frac{2x}{1 - x^2}.\frac{2y}{1 - y^2}.\frac{2z}{1 - z^2}

  55. If x+y+z=xyz,x + y + z = xyz, prove that x(1y2)(1z2)+y(1z2)(1x2)+z(1x2)(1y2)=4xyzx(1 - y^2)(1 - z^2) + y(1 - z^2)(1 - x^2) + z(1 - x^2)(1 - y^2) = 4xyz

  56. If A+B+C+D=2π,A + B + C + D = 2\pi, prove that cosA+cosB+cosC+cosD=4cosA+B2cosB+C2cosC+A2\cos A + \cos B + \cos C + \cos D = 4\cos\frac{A + B}{2}\cos\frac{B + C}{2}\cos\frac{C + A}{2}

  57. If A+B+C=2S,A + B + C = 2S, prove that cos2S+cos2(SA)+cos2(SB)+cos2(SC)=2+2cosAcosBcosC\cos^2S + \cos^2(S - A) + \cos^2(S - B) + \cos^2(S - C) = 2 + 2\cos A\cos B\cos C

  58. If A+B+C=π,A + B + C = \pi, prove that tan2A2+tan2B2+tan2C21\tan^2\frac{A}{2} + \tan^2\frac{B}{2} + \tan^2\frac{C}{2}\geq 1

  59. If A+B+C=π,A + B + C = \pi, prove that (tanA+tanB+tanC)(cotA+cotB+cotC)=1+secAsecBsecC(\tan A + \tan B + \tan C)(\cot A + \cot B + \cot C) = 1 + \sec A\sec B\sec C

  60. If A+B+C=π,A + B + C = \pi, prove that (cotB+cotC)(cotC+cotA)(cotA+cotC)=cosecAcosecBcosecC(\cot B + \cot C)(\cot C + \cot A)(\cot A + \cot C) = \cosec A\cosec B\cosec C

  61. If A+B+C=π,A + B + C = \pi, prove that 12sin2A(sin2B+sin2C)=3sinAsinBsinC\frac{1}{2}\sum \sin^2A(\sin 2B + \sin 2C) = 3\sin A\sin B\sin C

  62. If A+B+C+D=2π,A + B + C + D = 2\pi, prove that cosAcosB+cosCcosD=4sinA+B2sinA+D2cosA+C2\cos A - \cos B + \cos C - \cos D = 4\sin\frac{A + B}{2}\sin\frac{A + D}{2}\cos \frac{A + C}{2}

  63. If A,B,C,DA, B, C, D be the angles of a cyclic quadrilateral, prove that cosA+cosB+cosC+cosD=0\cos A + \cos B + \cos C + \cos D = 0

  64. If A+B+C=π,A + B + C = \pi, prove that cot2A+cot2B+cot2C1\cot^2A + \cot^2B + \cot^2C \geq 1

  65. If A+B+C=π,A + B + C = \pi, prove that cosA2cosBC2+cosB2cosCA2+cosC2cosAB2=sinA+sinB+sinC\cos \frac{A}{2}\cos\frac{B - C}{2} + \cos\frac{B}{2}\cos\frac{C - A}{2} + \cos \frac{C}{2}\cos\frac{A -B}{2} = \sin A + \sin B + \sin C

  66. In a ABC,\triangle ABC, prove that sin3Asin(BC)+sin3Bsin(CA)+sin3Csin(AB)=0\sin 3A\sin(B - C) + \sin 3B\sin(C - A) + \sin3C\sin(A - B) = 0