33. Periodicity of Trigonometrical Functions#

Definition of Periodic Functions: A function f(x)f(x) is said to be a periodic function if there exists positive number TT independent of xx such that f(x+T)=f(x),f(x + T) = f(x), for every xx\in domain ff.

The least positive value of TT for which f(x+T)=f(x)f(x + T) = f(x), for every xx\in domain ff is called the period of fundadmental period of f(x)f(x).

Example 1: Examine whether sinx\sin x is a periodic function or not. If yes, then find the period.

Sol. Given, f(x)=sinxf(x) = \sin x. Let f(x+T)=f(x)sin(x+T)=sinxf(x + T) = f(x) \Rightarrow \sin(x + T) = \sin x

x+T=nπ+(1)nx\Rightarrow x + T = n\pi + (-1)^nx, where n=0,±1,±2,n = 0, \pm1, \pm2, \ldots

The positive values of TT independent of xx are given by T=nπT = n\pi, where n=2,4,6,n = 2, 4, 6, \ldots

The least positive value of T=2πT = 2\pi.

Thus, sinx\sin x is a periodic function with period 2π2\pi.

Some Results

  1. sinx,cosx,secx\sin x, \cos x, sec x and cosecx\cosec x are periodic functions with period 2π2\pi.

  2. tanx\tan x and cotx\cot x are periodic function with period π\pi.

  3. sinx,cosx,tanx,cotx,secx|\sin x|, |\cos x|, |\tan x|, |\cot x|, |\sec x| and cosecx|\cosec x| are periodic functions with period π\pi.

  4. sinnx,cosnx,secnx\sin^nx, \cos^nx, \sec^nx and cosecnx\cosec^nx are periodic functions with period 2π2\pi and π\pi according as nn is odd or even.

  5. tannx\tan^nx and cotnx\cot^nx are periodic functions with period π\pi irrespective of nn being odd or even.

  6. If a circular funciton f(x)f(x) is periodic function with period TT, then kf(ax+b)kf(ax + b) is also a periodic function with period Ta\frac{T}{|a|}.

  7. If circular functions f(x)f(x) and g(x)g(x) are periodic functions with period T1T_1 and T2T_2 then af(x)+bg(x)af(x) + bg(x) is a periodic function with period TT, where T=T = L.C.M. of T1T_1 and T2T_2.

33.1. Problems#

  1. Which of the following functions are periodic? Also, find the period if the function is periodic.

    1. f(x)=10sin3xf(x) = 10\sin3x ii. f(x)=asinλx+bcosλxf(x) = a\sin\lambda x + b\cos\lambda x iii. f(x)=sin3xf(x) = \sin^3x iv. f(x)=cosx2f(x) = \cos x^2 v. f(x)=sinxf(x) = \sin\sqrt{x} vi. f(x)=tanxf(x) = \sqrt{\tan x} vii. f(x)=xxf(x) = x - |x| where x|x| is integral part of xx viii. f(x)=xcosxf(x) = x\cos x

  2. Which of the following functions are periodic? Also, find the period if the function is periodic and has fundamental period.

    1. f(x)=4sin(3x+π4)f(x) = 4\sin\left(3x + \frac{\pi}{4}\right) ii. f(x)=3cosx2+4sinx2f(x) = 3\cos\frac{x}{2} + 4\sin\frac{x}{2} iii. f(x)=cotx2f(x) = \cot\frac{x}{2} iv. f(x)=sin2xf(x) = \sin^2x v. f(x)=sinx2f(x) = \sin x^2 vi. f(x)=sin1xf(x) = \sin\frac{1}{x} vii. f(x)=1+tanxf(x) = 1 + \tan x viii. f(x)=[x]f(x) = [x] ix. f(x)=5f(x) = 5 x. f(x)=cosxf(x) = |\cos x| xi. f(x)=sin4x+cos4xf(x) = \sin^4x + \cos^4x xii. f(x)=x+sinxf(x) = x + \sin x xiii. f(x)=cosxf(x) = \cos\sqrt{x} xiv. f(x)=tan1(tanx)f(x) = \tan^{-1}(\tan x) xv. f(x)=sinx+cosxf(x) = |\sin x| + |\cos x| xvi. f(x)=sinπx3+sinπx4f(x) = \sin\frac{\pi x}{3} + \sin\frac{\pi x}{4} xvii. f(x)=sin(2πx+π3)+2sin(3πx+π4)+3sinπxf(x) = \sin\left(2\pi x + \frac{\pi}{3}\right) + 2\sin\left(3\pi x + \frac{\pi}{4}\right) + 3\sin\pi x xviii. f(x)=sinx+cosxf(x) = \sin x + \cos\sqrt{x}

  3. Show that the function f(x)=2sinx+3cos2xf(x) = 2\sin x + 3\cos 2x is a periodic function of period 2π2\pi.

  4. For each of the following functions, mention whether the function is periodic and if yes, mention the period:

    1. f(x)=2x[2x]f(x) = 2x - [2x], where [][ ] denotes the integral part, and b. g(x)=1+32sin2xg(x) = 1 + \frac{3}{2 - \sin^2x}

  5. Find the period of the function 114sin2(π33x2)1 - \frac{1}{4}\sin^2\left(\frac{\pi}{3} - \frac{3x}{2}\right).

33.2. Solutions#

  1. The solutions are given below:

    1. f(x)=10sin3xf(x) = 10\sin3x. Let f(x+T)=f(x)10sin3(x+T)=10sin3xf(x + T) = f(x) \Rightarrow 10\sin3(x + T) = 10\sin3x

      sin3(x+T)=sin3x\Rightarrow \sin3(x + T) = \sin3x

      3x+3T=nπ+(1)n3x\Rightarrow 3x + 3T = n\pi + (-1)^n3x, where n=0,±1,±2,±3,n = 0, \pm1, \pm2, \pm3, \ldots

      The positive value of TT independent of xx are given by 3T=nπ3T = n\pi, where n=2,4,6,n = 2, 4, 6, \ldots

      Least positive value of T=2π3T = \frac{2\pi}{3}.

      Hence, f(x)f(x) is a periodic function with a period of 2π3\frac{2\pi}{3}.

    2. f(x)=asinλx+bcosλx=a2+b2(aa2+b2sinλx+ba2+b2cosλx)f(x) = a\sin\lambda x + b\cos\lambda x = \sqrt{a^2 + b^2}\left(\frac{a}{\sqrt{a^2 + b^2}}\sin\lambda x + \frac{b}{\sqrt{a^2 + b^2}}\cos\lambda x\right)

      =a2+b2(cosαsinλx+sinαcosλx)= \sqrt{a^2+b^2}(\cos\alpha\sin\lambda x + \sin\alpha\cos\lambda x), where cosα=aa2+b2\cos\alpha = \frac{a}{\sqrt{a^2 + b^2}}

      =a2+b2sin(λx+α)= \sqrt{a^2 + b^2}\sin(\lambda x + \alpha)

      which is a periodic function with a period of 2πλ\frac{2\pi}{|\lambda|}.

    3. f(x)=sin3x=3sinxsin3x4=34sinx14sin3xf(x) = \sin^3x = \frac{3\sin x - \sin3x}{4} = \frac{3}{4}\sin x - \frac{1}{4}\sin3x

      sinx\sin x is a periodic function with period 2π2\pi and sin3x\sin3x is a periodic function with period 2π2\pi so the period of the required function will be L.C.M. of these two periods which will be 2π2\pi.

    4. f(x)=cosx2f(x) = \cos x^2. Let f(x+T)=f(x)cos(x+T)2=cosx2f(x + T) = f(x) \Rightarrow \cos(x + T)^2 = \cos x^2

      (x+T)2=2nπ±x2\Rightarrow (x + T)^2 = 2n\pi \pm x^2

      In the above expression xx cannot be elimminated until T=0T = 0 so the given function is non-periodic.

    5. f(x)=sinxf(x) = \sin\sqrt{x}. Let f(x+T)=f(x)sinx+T=sinxf(x + T) = f(x) \Rightarrow \sin\sqrt{x + T} = \sin\sqrt{x}

      x+T=nπ+(1)nx\Rightarrow \sqrt{x + T} = n\pi + (-1)^n\sqrt{x}

      which will give no positive value of TT independent of xx because x\sqrt{x} can be cancelled out only if T=0T = 0. Hence, f(x)f(x) is a non-periodic function.

    6. f(x)=tanxf(x) = \sqrt{\tan x}. Let f(x+T)=f(x)tan(x+T)=tanxtan(x+T)=tanxf(x + T) = f(x) \Rightarrow \sqrt{\tan(x + T)} = \sqrt{\tan x} \Rightarrow \tan(x + T) = \tan x

      x+T=nπ+x,n=0,±1,±2,\Rightarrow x + T = n\pi + x, n = 0, \pm1, \pm2, \ldots

      From this positive values of TT independent of xx are given by T=nπ,n=1,2,3,T = n\pi, n = 1, 2, 3, \ldots

      \therefore Least positive value of TT independent of xx is π\pi. Hence, f(x)f(x) is a periodic function of period π\pi.

    7. f(x)=x[x]f(x) = x - [x], where [x][x] denotes the integral part of xx. Let f(x+T)=f(x)(x+T)[x+T]=x[x]T=[x+T][x]=f(x + T) = f(x) \Rightarrow (x + T) - [x + T] = x - [x] \Rightarrow T = [x + T] - [x] = an integer

      Hence least positive value of TT independent of xx is 11. Hence, f(x)f(x) is a periodic function having a period of 11.

    8. f(x)=xcosxf(x) = x\cos x. Let f(x+T)=f(x)(x+T)cos(x+T)=xcosxf(x + T) = f(x) \Rightarrow (x + T)\cos(x + T) = x\cos x

      Tcos(x+T)=x[cosxcos(x+T)]\Rightarrow T\cos(x + T) = x[\cos x - \cos(x + T)]

      From this no value of TT independent of xx can be found because on R.H.S. one factor is xx which is an algebraid function and on L.H.S. there is no algebraic function and hance xx cannot be eliminated.

      Hence f(x)f(x) is a non-periodic function.

  2. The solutions are given below:

    1. f(x)=4sin(3x+π4)f(x) = 4\sin\left(3x + \frac{\pi}{4}\right). From the sixth result of section Some Results we know that this is a periodic function with period 2π3\frac{2\pi}{3} because sin3x\sin3x is a periodic function with period 2π2\pi.

    2. f(x)=3cosx2+4sinx2f(x) = 3\cos\frac{x}{2} + 4\sin\frac{x}{2}. We know that both sinx\sin x and cosx\cos x are periodic functions with period 2π2\pi. Therefore sinx2\sin\frac{x}{2} and cosx2\cos\frac{x}{2} will have a period of 4π4\pi. Now the function f(x)f(x) will have period equal to L.C.M. of periods of these two funcitons which is equal to 4π4\pi.

    3. f(x)=cotx2f(x) = \cot\frac{x}{2}. We know that cotx\cot x has a period of π\pi therefore f(x)f(x) will have period equal to 2π2\pi.

    4. f(x)=sin2x=1cos2x2f(x) = \sin^2x = \frac{1 - \cos 2x}{2}. We know that cosx\cos x is a periodic function with a period of 2π2\pi therefore f(x)f(x) will be a periodic function with period of π\pi.

    5. f(x)=sinx2f(x) = \sin x^2. Let f(x+T)=f(x)sin(x+T)2=sinx2(x+T)2=nπ+(1)nx2f(x + T) = f(x) \Rightarrow \sin(x + T)^2 = \sin x^2 \Rightarrow (x + T)^2 = n\pi + (-1)^nx^2 which will yield no value of TT independent of xx unless T=0T = 0. Thus, the given function is non-periodic.

    6. f(x)=sin1xf(x) = \sin\frac{1}{x}. Let f(x+T)=f(x)sin1x+T=sin1x1x+T=nπ+(1)n1xf(x + T) = f(x) \Rightarrow \sin\frac{1}{x + T} = \sin\frac{1}{x} \Rightarrow \frac{1}{x + T} = n\pi + (-1)^n\frac{1}{x} which will give no value of TT independent of xx unless T=0T = 0. Thus, the given function is non-periodic.

    7. f(x)=1+tanxf(x) = 1 + \tan x. We know that tanx\tan x is a periodic function with a period π\pi. Hence, f(x)f(x) will also be a periodic function with a period of π\pi.

    8. f(x)=[x]f(x) = [x], where [x][x] is integral value of xx. Let f(x+T)=f(x)[x+T]=[x][x+T][x]=0f(x + T) = f(x) \Rightarrow [x + T] = [x] \Rightarrow [x + T] - [x] = 0 which is not true for any value of TT as for any value of TT it is possiblel that [x+T][x]=1[x + T] - [x] = 1. Thus, f(x)f(x) is non-periodic.

    9. f(x)=5f(x) = 5. Let f(x+T)=f(x)5=5f(x + T) = f(x) \Rightarrow 5 = 5 which is true but gives us no value for TT. Thus, the given function is periodic but has no fundamental period.

    10. f(x)=cosxf(x)=cosxf(x) = |\cos x| \Rightarrow f(x) = -\cos x if cosx<0\cos x < 0 and f(x)=cosxf(x) = \cos x if cosx>0\cos x > 0. We know that cosx\cos x has a period of 2π2\pi therefore f(x)f(x) will have period equal to half the period of that of cosx\cos x i.e. π\pi.

    11. f(x)=sin4x+cos4x=(sin2x+cos2x)22sin2xcos2x=1sin22x2=11cos4x4=34+14cos4xf(x) = \sin^4x + \cos^4x = (\sin^2x + \cos^2x)^2 - 2\sin^2x\cos^2x = 1 - \frac{\sin^22x}{2} = 1 - \frac{1 - \cos4x}{4} = \frac{3}{4} + \frac{1}{4}\cos4x. We know that cosx\cos x is a function having period 2π2\pi therefore f(x)f(x) will be a periodic function with a period 2π/42\pi/4 i.e. π2\frac{\pi}{2}.

    12. f(x)=x+sinxf(x) = x + \sin x. Let f(x+T)=f(x)x+T+sin(x+T)=x+sinxf(x + T) = f(x) \Rightarrow x + T + \sin(x + T) = x + \sin x T=sinxsin(x+T)\Rightarrow T = \sin x - \sin(x + T) which will give no value of TT independent of xx as R.H.S. is a trigonometric function in xx but L.H.S. is not. So the function f(x)f(x) is non-periodic.

    13. f(x)=cosxf(x) = \cos\sqrt{x}. Following the fifth problem of previous problem we can deduce that given function is non-periodic.

    14. f(x)=tan1(tanx)f(x) = \tan^{-1}(\tan x). Let f(x+T)=f(x)tan1tan(x+T)=tan1(tanx)tan(x+T)=tanxf(x + T) = f(x) \Rightarrow \tan^{-1}\tan(x + T) = \tan^{-1}(\tan x) \Rightarrow \tan(x + T) = \tan x which gives T=πT = \pi as the period.

    15. f(x)=sinx+cosxf(x) = |\sin x| + |\cos x| which will yield four different equations depending on whether sinx\sin x and cosx\cos x are positive or negative. Also, the period of sinx\sin x and cosx\cos x is 2π2\pi for both of the functions. Thus, the given function will have a period of 2π/4=π22\pi/4 = \frac{\pi}{2}.

    16. f(x)=sinπx3+sinπx4f(x) = \sin\frac{\pi x}{3} + \sin\frac{\pi x}{4}. We know that sinx\sin x has a period of 2π2\pi therefore sinπx3\sin\frac{\pi x}{3} will have a period of 66 and sinπx4\sin \frac{\pi x}{4} will have a period of 88. The given function will have period equal to L.C.M. of 66 and 88 i.e. 24.

    17. f(x)=sin(2πx+π3)+2sin(3πx+π4)+3sinπxf(x) = \sin\left(2\pi x + \frac{\pi}{3}\right) + 2\sin\left(3\pi x + \frac{\pi}{4}\right) + 3\sin\pi x. We know that the period of sinx\sin x has a period of 2π2\pi so the three terms will have period of 1,2/31, 2/3 and 22 respectively. Thus, given function will have period equal to L.C.M. of these three periods i.e. 22.

    18. f(x)=sinx+cosxf(x) = \sin x + \cos\sqrt{x}. Now we have proven that cosx\cos\sqrt{x} is a non-periodic function therefore f(x)f(x) will also be non-periodic.

  3. f(x)=2sinx+3cos2xf(x) = 2\sin x + 3\cos 2x. We know that both sinx\sin x and cosx\cos x have a period of 2π2\pi therefore period of first term would be 2π2\pi and of the second term will be π\pi. f(x)f(x) will have period equal to L.C.M. of these two terms i.e. 2π2\pi.

  4. a. Given, f(x)=2x[2x]f(x) = 2x - [2x]. Let f(x+T)=f(x)2(x+T)[2(x+T)]=2x[2x]f(x + T) = f(x) \Rightarrow 2(x + T) - [2(x + T)] = 2x - [2x]

    T=[2x+2T][2x]2=aninteger2\Rightarrow T = \frac{[2x + 2T] - [2x]}{2} = \frac{\mathrm{an integer}}{2}.

    Therefore, positive value of TT independentt of xx can be found and least such value is 12\frac{1}{2}.

    1. Given, g(x)=1+32sin2xg(x) = 1 + \frac{3}{2 - \sin^2x}. Let g(x+T)=g(x)g(x + T) = g(x)

      32sin2(x+T)=32sin2x\Rightarrow \frac{3}{2 - \sin^2(x + T)} = \frac{3}{2 - \sin^2x}

      sin2(x+T)=sin2xx+T=nπ+(1)n(±x)=nπ±x\Rightarrow \sin^2(x + T) = \sin^2x \Rightarrow x + T = n\pi +(-1)^n(\pm x) = n\pi\pm x

      which gives us a periodic function with T=πT = \pi.

  5. 114sin2(π33x2)=78+18cos(3x2π3)1 - \frac{1}{4}\sin^2\left(\frac{\pi}{3} - \frac{3x}{2}\right) = \frac{7}{8} + \frac{1}{8}\cos\left(3x - \frac{2\pi}{3}\right) which is a periodic function with period 2π/32\pi/3.